What is database Index?

» Indexes are special lookup tables that the database search engine can use to speed up data
retrieval.

» A database index is a data structure that improves the speed of data retrieval operations on a
database table.

» Anindex in a database is very similar to an index in the back of a book.

» Indexes are used to retrieve data from the database very fast. The users cannot see the
indexes, they are just used to speed up searches/queries.

» Updating a table with indexes takes more time than updating a table without (because the

indexes also need an update). So, only create indexes on columns that will be frequently
searched against.

Syntax to create and drop an Index

» Syntax to create an index:

e e

e e L e ottt

B et e P LA LS

ON Student (Studentname);

» Syntax to drop an index:

e e A e e

What is Indexing?

» Indexing is a way to optimize the performance of a database by minimizing the number of disk
accesses required when a query is processed.

P It is a data structure technique which is used to quickly locate and access the data in a
database.

Structure of Index in database

» Indexes are created using a few database columns.

search-key pointer

= The first column is the search key that contains a copy of the primary key or candidate key of the table.
These values are stored in sorted order so that the corresponding data can be accessed quickly.

- The second column is the data reference or pointer which contains a set of pointers holding the address of
the disk block where that particular key value can be found.

» The indexing has various attributes:
- Access Types: This refers to the type of access such as value based search, range access, etc.
- Access Time: It refers to the time needed to find particular data element or set of elements.
- Insertion Time: It refers to the time taken to find the appropriate space and insert a new data.
- Deletion Time: Time taken to find an item and delete it as well as update the index structure.
- Space Overhead: It refers to the additional space required by the index.

Indexing Methods (Types)

» Click to add text

=
3 =

Primary Index (Ordered Index)

» If the index is created on the primary key of the table, then it is known as primary index. These
primary keys are unique to each record.

» As primary keys are stored in sorted order, the performance of the searching operation is quite
efficient.

» Student(RolINo, Name, Address, City, MobileNo)

CREATE INDEX idx_StudentRno
ON Student (RolINo);

m Create an Primary Index for Employee(EID, Name, Address, City).

» The primary index can be classified into two types:
- Dense index
- Sparse index

Dense Index

» In dense index, there is an index record for every
search key value in the database.

» This makes searching faster but requires more space
to store index records.

» In this, the number of records in the index table is
same as the number of records in the main table.

» Index records contain search key value and a pointer
to the actual record on the disk.

101

102

\ 4

103

A 4

104

A 4

105

A 4

106

A 4

A 4

107

108

A A

109

110

A 4

Index Table

A 4

Rno Name
101 Raj
102 Meet
103 Suresh
104 Mira
105 Nita
106 Om
107 Ajay
108 Amit
109 Jeet
110 Nayan

Main Table

Sparse Index

» In sparse index, index records are not created for
every search key.

» The index record appears only for a few items in the
data file.

» It requires less space, less maintenance overhead for
insertion, and deletions but is slower compared to the
dense index for locating records.

» To search a record in sparse index we search for a
value that is less than or equal to value in index for
which we are looking.

» After getting the first record, linear search is
performed to retrieve the desired record.

» In the sparse indexing, as the size of the main table
grows, the size of index table also grows.

Rno Name
101 Raj
/ 102 Meet
103 Suresh
101 £ 104 | Mira
104 // 105 | Nita
107 = 106 | Om
110 N T~ Ajay
108 | Amit
109 | Jeet
110 | Nayan
Index Table Main Table

Secondary Index (Non-clustering Index) (Multilevel Index)

» In secondary indexing, to reduce the size of mapping, Rno | Name
another level of indexing is introduced. 101 | Raj
» In this method, the huge range for the columns is 102 | Meet

selected initially so that the mapping size of the first A 101
level becomes small. 101 |- [111 | 4+—|111 |Mira
» Then each range is further divided into smaller 201 \\ 112 | Nita
ranges. 301 201 \\
» The mapping of the first level is stored in the | [211 201, |iAjmy
primary memory, so that address fetch is faster. 202 | Amit
» The mapping of the second level and actual data are el
stored in the secondary memory (hard disk). 311 211 | Nayan
212 | Zeel
Primary Secondary :
Index Index Main Table

Clustering Index

» Sometimes the index is created on non-primary key
columns which may not be unique for each record.

» In this case, to identify the record faster, we will
group two or more columns to get the unique value
and create index out of them. This method is called a
clustering index.

» The records which have similar characteristics are
grouped, and indexes are created for these group.

CE

N, N

EE

EC

ME

/

Index
Table

Dept | Name
CE Raj
CE Meet
EE Mira
EE Nita
EC Ajay
EC Amit
ME Nayan
ME | Zeel
Main Table

B-tree

» B-tree is a data structure that store data in its node in sorted order. We can represent sample
B-tree as follows.

R | o D Root Node
Intermediary Node

“\--
""""

Leaf Node

=% 12,13, 14

» B-tree stores data in such a way that each node contains keys in ascending order.
» Each of these keys has two references to another two child nodes.

» The left side child node keys are less than the current keys and the right side child node keys
are greater than the current keys.

B-tree (How to search a particular node?)

PRIERSE Root Node

Intermediary Node

Leaf die

12,13,14 [18,19 || 24, 25

» Suppose we want to search 18 in the above B tree structure.

» First, we will fetch for the intermediary node which will direct to the leaf node that can contain a
record for 18.

» So, in the intermediary node, we will find a branch between 16 and 20 nodes.

» Then at the end, we will be redirected to the fifth leaf node. Here DBMS will perform a
sequential search to find 18.

Hashing

» For a huge database, it can be almost next to impossible to search all the index values through
all its level and then reach the destination data block to retrieve the desired data.

» Hashing is a technique to directly search the location of desired data on the disk without
using index structure.

» Data is stored in the form of data blocks whose address is generated by applying a hash
function in the memory location where these records are stored known as a data block or data
bucket.

» Hashing uses hash functions with search keys as parameters to generate the address of a data
record.

» Data bucket: Data buckets are the memory locations where the records are stored.

» Hash Function: Hash function is a mapping function that maps all the set of search keys to
actual record address. Generally, hash function uses primary key to generate the hash index -
address of the data block.

» Types of hashing methods are Static hashing and Dynamic hashing

Static hashing

» In the static hashing, the resultant data bucket address will always remain the same.

the resultant bucket address will always be 1. So, you will not see any change in the bucket
address.

» Therefore, in this static hashing method, the number of data buckets in memory always remains
constant.

Dynamic hashing

» The drawback of static hashing is that that it does not expand or shrink dynamically as the size
of the database grows or shrinks.

» In dynamic hashing, data buckets grows or shrinks (added or removed dynamically) as the
records increases or decreases.

» Dynamic hashing is also known as extended hashing.

Dynamic hashing

» In dynamic hashing, the hash function is made to produce a large number of values.
» For Example, there are three data records D1, D2 and D3 .
» The hash function generates three addresses 0101, 1001 and 1010 respectively.

» This method of storing considers only part of this address - especially only first one bit to store
the data.

» So it tries to load three of them at address 0 and 1.

02\1

D3

Dynamic hashing

» But the problem is that no bucket address is remaining for D3.
» The bucket has to grow dynamically to accommodate D3.

» So it changes the address have 2 bits rather than 1 bit, and then it updates the existing data to
have 2 bit address.

» Then it tries to accommodate D3.

00
2
= \ 10
11

