Detailed Syllabus

Sr. No	Topic
	Basics of Algorithms and mathematics
1	 Algorithm definitions and examples
	 Mathematics for algorithmic sets
	Functions and relations
	Combinations
	 Vectors and matrices
	Linear inequalities and linear equations
2	Analysis of Algorithms
	 Orders of Magnitude (Asymptotic notations)
	 Growth rates, some common bounds (constant, logarithmic,
	linear, polynomial, exponential)
	Time and space complexity
	Average and worst case analysis
	Analysing control statements
	 Sorting Algorithms and analysis: Insertion sort, Radix sort
3	Divide and conquer algorithms
	Introduction
	 Recurrence Relations and methods to solve recurrence(substitution,
	change of variables, master's method, Recurrence tree)
	Sorting (Quick sort)
	Matrix multiplication
	Binary search
4	Greedy algorithms
	General Characteristics of greedy algorithms
	 Problem solving using Greedy Algorithm- Graphs: Minimum
	Spanning trees (Kruskal's algorithm, Prim's algorithm), 0-1
	Knapsack problem, Activity selection problem, Making Change
-	Problem
⁵ .	Dynamic programming
	• Introduction
	The Principle of Optimality
	Problem Solving using Dynamic Programming- Assembly Line Schoduling Francisco Visconia Line
	Scheduling, Fractional Knapsack problem, Matrix chain
	multiplication, shortest path, Longest Common Subsequence

6	 Graph Algorithms: An introduction using graphs and games Traversing Trees— Preconditioning, Depth First Search (DFS), Undirected Graph, Directed Graph, Breath First Search (BFS), Applications of BFS and DFS
7	Backtracking and Branch and Bound Backtracking –The Knapsack Problem; The Eight queens problem, General Template Branch and Bound –The Assignment Problem; The Knapsack Problem, The min-max principle
8	Introduction to Complexity Theory The class P and NP Polynomial reduction NP- Complete Problems NP-Hard Problems Travelling Salesman problem