Unit 2 - Regular Languages \& Finite Automata

1. Regular language \& Regular Expression.

Regular Language :-

A Regular Language over an alphabet \sum is one that can be obtained from this basic language using the operation of Union, Concatenation and Kleene (*).

Regular Expression :-

- Regular Language can be described by an explicit formula.
- It is common to simplify the formula slightly by leaving out the set brackets $\}$ or replacing them with parenthesis () and replace U by + . The result is called Regular Expression.

	Language	Regular Expression
1.	$\{\wedge\}$	\wedge
2.	$\{0\}$	0
3.	$\{001\}$	001
4.	$\{0,1\}$	$0+1$
5.	$\{0,10\}$	$0+10$
6.	$\{1,0\} 110$	$(1+0) 110$
7.	$\{110\}^{*}\{0,1\}$	$(110)^{*}(0+1)$
8.	$\{1\}^{*}\{10\}$	$(1)^{*}(10)$
9.	$\{10,111,11010\}^{*}$	$(10+111+11010)^{*}$
10.	$\{0,10\}^{*}\left(\{11\}^{*} \cup\{001, \wedge\}\right)$	$(0+10)^{*}\left((11)^{*}+\left(001+^{\wedge}\right)\right)$

Table 2.1. Regular Expression

More Examples of regular Expression

1. 0 or 1

0+1
2. 0 or 11 or 111
$0+11+111$
3. Regular expression over $\Sigma=\{a, b, c\}$ that represent all string of length 3 .
$(a+b+c)(a+b+c)(a+b+c)$
4. String having zero or more a.
a*
5. String having one or more a.
a^{+}
6. All binary string.
$(0+1)$ *
7. 0 or more occurrence of either a or b or both (a+b)*
8. 1 or more occurrence of either a or b or both $(a+b)^{+}$
9. Binary no. ends with 0
$(0+1) * 0$
10. Binary no. ends with 1
$(0+1) * 1$
11. Binary no. starts and ends with 1.

$$
1(0+1) * 1
$$

12. String starts and ends with same character.
```
0(0+1)*0 or a(a+b)*a
1(0+1)*1 b(a+b)*b
```

13. All string of a and b starting with a $a(a / b)^{*}$
14. String of 0 and 1 ends with 00. $(0+1) * 00$
15. String ends with $a b b$.
$(a+b) * a b b$
16. String starts with 1 and ends with 0 .
$1(0+1) * 0$
17. All binary string with at least 3 characters and 3rd character should be zero. $(0+1)(0+1) 0(0+1)^{*}$
18. Language which consist of exactly two b 's over the set $\sum=\{a, b\}$ a*ba*ba*
19. $\sum=\{a, b\}$ such that 3 rd character from right end of the string is always a.
$(a+b) * a(a+b)(a+b)$
20. Any no. of a followed by any no. of b followed by any no. of c.

$$
a^{*} b^{*} c^{*}
$$

21. String should contain at least 3 one.

$$
(0+1)^{*} 1(0+1) * 1(0+1) * 1(0+1)^{*}
$$

22. String should contain exactly two 1's 0*10*10*
23. Length of string should be at least 1 and at most 3 .
$(0+1)+(0+1)(0+1)+(0+1)(0+1)(0+1)$
24. No.of zero should be multiple of 3
(1*01*01*01*)*
25. $\sum=\{a, b, c\}$ where a should be multiple of 3 .
$\left((b+c) * a(b+c)^{*} a(b+c)^{*} a(b+c)^{*}\right)^{*}$
26. Even no. of 0.
$\left(1^{*} 01^{*} 01^{*}\right)^{*}$
27. Odd no. of 1.

0*(10*10*)*10*
28. String should have odd length.
$(0+1)((0+1)(0+1))^{*}$
29. String should have even length.
$((0+1)(0+1))^{*}$
30. String start with 0 and has odd length. $0((0+1)(0+1))^{*}$
31. String start with 1 and has even length.
$1(0+1)((0+1)(0+1))^{*}$
32. Even no of 1

Unit 2 - Regular Languages \& Finite Automata

(0*10*10*)*
33. String of length 6 or less
$(0+1+\wedge)^{6}$
34. String ending with 1 and not contain 00. $(1+01)^{+}$
35. All string begins or ends with 00 or 11 .
$(00+11)(0+1)^{*}+(0+1)^{*}(00+11)$
36. Language of all string containing both 11 and 00 as substring.
$((0+1) * 00(0+1) * 11(0+1) *)+\left((0+1) * 11(0+1) * 00(0+1)^{*}\right)$
37. Language of C identifier. $\left(_+L\right)\left(_+L+D\right)^{*}$

2. Definition of Finite Automata.

A finite Automata or finite state machine is a 5 -tuple $\left(Q, \Sigma, q_{0}, A, \delta\right)$ where, Q is finite set of states;
Σ is finite alphabet of input symbols;
$\mathrm{q}_{0} \in \mathrm{Q}$ (Initial state);
A (set of accepting states);
δ is a function from $Q \times \Sigma \rightarrow Q$ (Transition function);
For any element q of Q and any symbol $a \in \sum$, we interpret $\delta(q, a)$ as the state to which the Finite Automata moves, if it is in state q and receives the input a.

Application of finite automata

A finite automaton is used to solve several common types of computer algorithm. Some of them are:

1. Design of digital circuit.
2. String matching.
3. Communication protocols for information exchange.
4. Lexical analysis phase of a compiler.

3. The Extended transition function $\boldsymbol{\delta}^{*}$ for $\mathbf{F A}$.

Let $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ be an Finite Automata. We define the function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ as follow:

1) For any $q \in Q, \delta^{*}\left(q,{ }^{\wedge}\right)=q$
2) For any $q \in Q, y \in \Sigma^{*}$, and $a \in \Sigma$
$\delta^{*}(q, y a)=\delta\left(\delta^{*}(q, y), a\right)$
Example:

Fig 2.1 Finite Automata

$$
\begin{aligned}
& \delta^{*}(q, a b c) \\
& \delta\left(\delta^{*}(q, a b), c\right)
\end{aligned}
$$

Dedicated Faculty Committed Education
Institute of Engineering \& Technology

Unit 2 - Regular Languages \& Finite Automata

$$
\begin{aligned}
& \delta\left(\delta^{*}\left(\delta^{*}(q, a), b\right), c\right) \\
& \delta\left(\delta\left(\delta^{*}(q, \wedge a), b\right), c\right) \\
& \delta\left(\delta\left(\delta\left(\delta^{*}(q, \wedge), a\right), b\right), c\right) \\
& \delta(\delta(\delta(q, a), b), c) \\
& \delta(\delta(q 1, b), c) \\
& \delta\left(q_{2}, c\right) \\
& q_{3}
\end{aligned}
$$

4. Acceptance by an Finite Automata.

Let $M=\left(Q_{1}, \Sigma, q_{0}, A, \delta\right)$ be an FA. A string $x \in \Sigma^{*}$ is accepted by M if $\delta^{*}\left(q_{0}, x\right) \in A$. If string is not accepted, we can say it is rejected by M. The language accepted by M, or the language recognized by M, is the set $L(M)=\left\{x \in \Sigma^{*} / x\right.$ is accepted by $\left.M\right\}$ If L is any Language over Σ, L is accepted or recognized by M if and only if $\mathrm{L}=\mathrm{L}(\mathrm{M})$.

5. Draw Finite Automata for following:

1. The string with next to last symbol as 0 .

Fig 2.2 Finite Automata for next to last symbol as 0
2. The string with number of 0 s and number of 1 s are odd

Fig 2.3 Finite Automata for number of 0 s and number of 1 s are odd
3. The string ending in $\mathbf{1 0}$ or 11.

Fig 2.4 Finite Automata for string ending in 10 or 11
4. The string corresponding to Regular expression $\{00\}^{*}\{11\}^{*}$

Fig 2.5 Finite Automata for $\{00\}^{*}\{11\}^{*}$
5. $(a+b) * b a a a$

Fig 2.6 Finite Automata for (a+b)*baaa
6. Find a string of minimum length in $\{0,1\}^{*}$ not in the language corresponding to the regular expression: $1^{*}(0+10)^{*} 1^{*}$
The smallest string $=0110$

7. Define Dead end state.

Dead state are those non accepting states whose transitions for every input symbols terminate

Unit 2 - Regular Languages \& Finite Automata

on themselves.

Fig 2.7 Dead end state
Ex: all strings of length at most 3 . The string of length >3 should be rejected through a dead state or a failure state. In above example dead state is q_{4}.

8. Union, Intersection \& Compliment operation on Finite Automata

Suppose M1=($\left.\mathrm{Q}_{1}, \Sigma, \mathrm{q}_{1}, \mathrm{~A}_{1}, \delta_{1}\right)$

$$
M 2=\left(Q_{2}, \Sigma, q_{2}, A_{2}, \delta_{2}\right)
$$

Accept languages L 1 and L 2 respectively. Let M be an Finite Automata defined by $M=\left(Q, \sum, q_{0}, A, \delta\right)$ where,
$\mathrm{Q}=\mathrm{Q} 1 \times \mathrm{Q} 2$
$q_{0}=\left(q_{1}, q_{2}\right)$ and transition function δ is defined by the formula $\delta((p, q), a)=(\delta 1(p, a), \delta 2(q, a))$ for any $p \in Q 1$ and $q \in Q 2$ and $a \in \sum$ then

1) if $A=\{(p, q) / p \in A 1$ or $q \in A 2\}, M$ accept the language $L 1 \cup L 2$;
2) if $A=\{(p, q) / p \in A 1$ and $q \in A 2\}, M$ accept the language $L 1 \cap L 2$;
3) if $A=\{(p, q) / p \in A 1$ and $q \notin A 2\}, M$ accept the language $L 1-L 2$.

9. Draw Finite Automata for following languages:

$L 1=\left\{x / x 00\right.$ is not substring of $\left.x, x \in\{0,1\}^{*}\right\}$
$L 2=\left\{x / x\right.$ ends with $\left.01, x \in\{0,1\}^{*}\right\}$
Draw finite Automata for L1 U L2, L1 \cap L2 and L1-L2.
M1

Fig 2.8 Finite Automata for 00 is not substring
M2

Fig 2.9 Finite Automata for string ending in 01
Here $Q 1=\{A, B, C\}$ and $Q 2=\{P, Q, R\}$
So, $Q=Q 1 \times Q 2=\{A P, A Q, A R, B P, B Q, B R, C P, C Q, C R\}$
$\mathrm{q}_{0}=\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)=(\mathrm{A}, \mathrm{P})$
$\delta((A, P), O)=(\delta(A, 0), \delta(P, 0))$
= BQ
$\delta((A, P), 1)=(\delta(A, 1), \delta(P, 1))$
= AP
$\delta((B, Q), O)=(\delta(B, 0), \delta(Q, 0))$
$=C Q$
$\delta((B, Q), 1)=(\delta(B, 1), \delta(Q, 1))$
$=A R$
$\delta((C, Q), 0)=(\delta(C, 0), \delta(Q, 0))$
= CQ
$\delta((C, Q), 1)=(\delta(C, 1), \delta(Q, 1))$

$$
=C R
$$

$\delta((A, R), 0)=(\delta(A, 0), \delta(R, 0))$
= BQ
$\delta((A, R), 1)=(\delta(A, 1), \delta(R, 1))$

$$
=\mathrm{AP}
$$

$\delta((C, R), 0)=(\delta(C, 0), \delta(R, 0))$
= CQ
$\delta((C, R), 1)=(\delta(C, 1), \delta(R, 1))$
= CP
$\delta((C, P), O)=(\delta(C, O), \delta(P, O))$
= CQ
$\delta((C, P), 1)=(\delta(C, 1), \delta(P, 1))$

$$
=\mathrm{CP}
$$

L1-L2

Fig 2.10 Finite Automata for L1-L2

L1 U L2

Fig. 2.11 Finite Automata for L1 U L2
L1 $\cap \mathbf{L 2}$

Fig. 2.12 Finite Automata for L1 $\cap \mathbf{L 2}$

10. Draw Finite Automata for following languages:

$L 1=\left\{x / x 11\right.$ is not substring of $\left.x, x \in\{0,1\}^{*}\right\}$
$\mathrm{L} 2=\left\{\mathrm{x} / \mathrm{x}\right.$ ends with $\left.10, \mathrm{x} \in\{0,1\}^{*}\right\}$
Draw finite Automata for L1 L 2 and L1-L2.
(Most IMP)
M1

Fig. 2.13 Finite Automata for 11 is not substring
M2

Fig. 2.14 Finite Automata for string ending in 10
Here $Q 1=\{A, B, C\}, Q 2=\{P, Q, R\}$
So, $Q=Q 1 \times Q 2=\{A P, A Q, A R, B P, B Q, B R, C P, C Q, C R\}$
$q_{0}=\left(q_{1}, q_{2}\right)$
$\mathrm{q}_{0}=(\mathrm{A}, \mathrm{P})$
$\delta((A, P), O)=(\delta(A, O), \delta(P, O))$
$=A P$
$\delta((A, P), 1) \quad=(\delta(A, 1), \delta(P, 1))$
= BQ
$\delta((B, Q), 0)=(\delta(B, 0), \delta(Q, 0))$
= AR
$\delta((B, Q), 1)=(\delta(B, 1), \delta(Q, 1))$
= CQ
$\delta((A, R), 0)=(\delta(A, 0), \delta(R, 0))$
$=A P$
$\delta((A, R), 1)=(\delta(A, 1), \delta(R, 1))$
= BQ
$\delta((C, Q), 0)=(\delta(C, 0), \delta(Q, 0))$
= CR
$\delta((C, Q), 1)=(\delta(C, 1), \delta(Q, 1))$
= CQ
$\delta((C, R), 0)=(\delta(C, 0), \delta(R, 0))$

$$
=C P
$$

$\delta((C, R), 1)=(\delta(C, 1), \delta(R, 1))$
= CQ
$\delta((C, P), O)=(\delta(C, O), \delta(P, O))$
= CP
$\delta((C, P), 1)=(\delta(C, 1), \delta(P, 1))$

$$
=C Q
$$

L1 - L2

Fig. 2.15 Finite Automata for L1-L2
$\mathbf{L 1} \cap \mathbf{L 2}$

Fig. 2.16 Finite Automata for $\mathbf{L 1} \cap \mathrm{L} 2$
11. Draw the Finite Automata recognizing the following language

- L1 \cap L2
- L1- L2

L1

Fig. 2.17 Finite Automata
L2

Fig. 2.18 Finite Automata

$$
\begin{aligned}
& Q 1=\{A, B, C\}, Q 2=\{A, B, C\} \\
& Q=Q 1 \times Q 2=\{A A, A B, A C, B A, B B, B C, C A, C B, C C\} \\
& q_{0}=\left(q_{1}, q_{2}\right) \quad q_{0}=(A, A)
\end{aligned}
$$

Unit 2 - Regular Languages \& Finite Automata

$$
\begin{array}{ll}
\delta((A, A), 0) & =(\delta(A, 0), \delta(A, O))=B B \\
\delta((A, A), 1) & =(\delta(A, 1), \delta(A, 1))=A A \\
\delta((B, B), 0) & =(\delta(B, 0), \delta(B, 0))=C C \\
\delta((B, B), 1) & =(\delta(B, 1), \delta(B, 1))=A A \\
\delta((C, C), 0) & =(\delta(C, 0), \delta(C, 0))=C C \\
\delta((C, C), 1) & =(\delta(C, 1), \delta(C, 1))=C C
\end{array}
$$

L1-L2

Fig. 2.19 Finite Automata for L1-L2
$\mathbf{L 1} \cap \mathbf{L 2}$

Fig. 2.20 Finite Automata for $\mathrm{L} 1 \cap \mathrm{~L} 2$

12. Definition: Nondeterministic Finite Automata.

A nondeterministic finite automaton (NFA) is a 5 -tuple ($\mathrm{Q}, \Sigma, \mathrm{q}_{0}, \mathrm{~A}, \delta$) Where Q and Σ are nonempty finite sets, $q_{0} \in Q, A \subseteq Q$, and $\delta: Q \times \Sigma \rightarrow 2^{Q}$

Q is a finite set of states;
Σ is a finite set of input alphabets;
$\mathrm{q}_{0} \in \mathrm{Q}$ is the initial state;
$A \subseteq Q$ is the set of accepting states;
$\delta: Q \times(\Sigma \cup\{\Lambda\}) \rightarrow 2^{\mathrm{Q}}$ is the transition function.

Unit 2 - Regular Languages \& Finite Automata

13. Definition: Non recursive Definition of $\boldsymbol{\delta}^{\boldsymbol{*}}$ for an NFA.

For an NFA $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$, and any $p \in Q, \delta^{*}(p, \Lambda)=\{p\}$. For any $p \in Q$ and $x=a_{1} a_{2} \ldots . a_{n} \in \Sigma^{*}$ (with $n \geq 1$), $\delta^{*}(p, x)$ is the set of all states q for which there is a sequence of states $p=p_{0}, p_{1}, \ldots . p_{n-}$ ${ }_{1}, p_{n}=q$ satisfying
$P_{i} \in \delta\left(p_{i-1}, a_{i}\right)$ for each i with $1 \leq i \leq n$

14. Definition: Recursive Definition of δ^{*} for an NFA

Let $M=(Q, \Sigma, q 0, A, \delta)$, be an NFA. The function $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$ is defined as follows.

1) For any $q \in Q, \delta^{*}(q, \Lambda)=\{q\}$.
2) For any $q \in Q, y \in \Sigma^{*}$, and $a \in \Sigma$,
$\delta^{*}(q, y a)=\quad U \quad \delta(r, a)$
$r \in \delta^{*}(q, y)$

15. Definition: Acceptance by an NFA

Let $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ be an NFA. The string $x \in \Sigma^{*}$ is accepted by M if $\delta^{*}\left(q_{0}, x\right) \cap A \neq \varnothing$. The language recognized, or accepted, by M is the set $L(M)$ of all string accepted by M. For any language $L \subseteq \Sigma^{*}$, L is recognized by M if $L=L(M)$.

16. Using the Recursive Definition of $\boldsymbol{\delta}^{\boldsymbol{*}}$ in an NFA.

 Let $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$, where $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{0,1\}, A=\left\{q_{3}\right\}$, and δ is given by the following table:| \mathbf{q} | $\boldsymbol{\delta}(\mathbf{q}, \mathbf{0})$ | $\boldsymbol{\delta}(\mathbf{q}, \mathbf{1})$ |
| :--- | :--- | :--- |
| q_{0} | $\left\{q_{0}\right\}$ | $\left\{q_{0}, q_{1}\right\}$ |
| q_{1} | $\left\{q_{2}\right\}$ | $\left\{q_{2}\right\}$ |
| q_{2} | $\left\{q_{3}\right\}$ | $\left\{q_{3}\right\}$ |
| q_{3} | \varnothing | \varnothing |

Table 2.2 Transition Table

Fig. 2.21 NFA
Let us try to determine $L(M)$ by calculating $\delta^{*}\left(q_{0}, x\right)$ for a few string x of increasing length. First observe that form the non recursive definition of δ^{*} it is almost obvious that δ and δ^{*} agree for string of length 1 . We see from the table that $\delta^{*}\left(q_{0}, 0\right)=\left\{q_{0}\right\}$ and $\delta^{*}\left(q_{0}, 1\right)=\left\{q_{0}, q_{1}\right\}$;

$$
\delta^{*}\left(q_{0}, 11\right) \quad=\quad U \quad \delta(r, 1)
$$

$$
\begin{aligned}
& r \in \delta^{*}\left\{q_{0}, 1\right\} \\
& =\quad U \quad \delta(r, 1) \\
& r \in\left\{q_{0}, q 1\right\} \\
& =\delta\left\{q_{0}, 1\right\} \cup \delta\left(q_{1}, 1\right) \\
& =\left\{q_{0}, q_{1}\right\} \cup\left\{q_{2}\right\} \\
& =\left\{q_{0}, q_{1}, q_{2}\right\} \\
& \delta^{*}\left(q_{0}, 01\right)=U \quad \delta(r, 1) \\
& r \in \delta^{*}\left(q_{0}, 0\right) \\
& =\quad U \quad \delta(r, 1) \\
& r \in(q 0) \\
& =\delta\left(q_{0}, 1\right) \\
& =\left\{q_{0}, q_{1}\right\} \\
& \delta^{*}\left(q_{0}, 111\right)=U \quad \delta(r, 1) \\
& r \in \delta^{*}\left(q_{0}, 11\right) \\
& =\quad U \quad \delta(r, 1) \\
& r \in\left(q_{0}, q_{1}, q_{2}\right) \\
& =\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right) \cup \delta\left(q_{2}, 1\right) \\
& =\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
& \delta^{*}\left(q_{0}, 011\right)=U \quad \delta(r, 1) \\
& r \in \delta^{*}\left(q_{0}, 01\right) \\
& =\quad U \quad \delta(r, 1) \\
& r \in\left(q_{0}, q_{1}\right) \\
& =\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right) \\
& =\left\{q_{0}, q_{1}, q_{2}\right\}
\end{aligned}
$$

17. Definition: A Nondeterministic Finite Automaton with Λ Transition.

A nondeterministic finite automata with Λ - Transition is a 5 -tuple ($\mathrm{Q}, \Sigma, \mathrm{q} 0, \mathrm{~A}, \delta$), where Q and Σ are finite sets, $q_{0} \in Q, A \subseteq Q$, and $\delta: Q \times(\Sigma \cup\{\wedge\}) \rightarrow 2^{Q}$

18. Definition: Nondeterministic Definition of $\boldsymbol{\delta}^{*}$ for an NFA- $\boldsymbol{\Lambda}$.

For an NFA- $\Lambda M=\left(Q, \Sigma, q_{0}, A, \delta\right)$, states $p, q \in Q$, and a string $x=a_{1} a_{2} \ldots . a_{n} \in \Sigma^{*}$, we will say M moves from p to q by a sequence of transition corresponding to x if there exist an integer $m \geq n$, a sequence $b_{1} b_{2} \ldots b_{m} \in \Sigma \cup\{\Lambda\}$ satisfying $b_{1} b_{2} \ldots b_{m}=x$, and a sequence of states $p=p_{0}, p_{1} \ldots p_{m}=q$ so that for each i with $1 \leq i \leq m, p i \in\left(p_{i-1}, b_{i}\right)$.

Unit 2 - Regular Languages \& Finite Automata

For $x \in \Sigma^{*}$ and $p \in \delta^{*}(p, x)$ is the set of all states $q \in Q$ such that there is a sequence of transition corresponding to x by which M moves from p to q.

19. Definition: Λ - Closure of a Set of States.

Let $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$, be an NFA $-\Lambda$, and let S ne any subset of Q. The Λ - closure of S is the set $\Lambda(s)$ defined as follows.

1) Every element of S is an element of $\Lambda(s)$;
2) For any $q \in \Lambda(s)$, every element of $\delta(q, \Lambda)$ is in $\Lambda(s)$;
3) No other elements of Q are in $\Lambda(s)$;

20. Definition: Recursive Definition of $\boldsymbol{\delta}^{*}$ for an NFA- Λ.

Let $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ be an NFA $-\Lambda$, The extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$ is defined as follows.

1) For any $q \in Q, \delta^{*}(q, \Lambda)=\Lambda(\{q\})$.
2) For any $q \in Q, y \in \Sigma^{*}$, and $a \in \Lambda$,

$$
\delta^{*}(q, y a)=\Lambda\left(\underset{r \in \delta^{*}(q, y)}{\cup} \delta(r, a)\right)
$$

A string x is accepted by M if $\delta^{*}\left(q_{0}, x\right) \cap A \neq \varnothing$. The language recognized by M is the set $L(M)$ of all strings accepted by M.

21. Compare FA, NFA and NFA-^.

Parameter	NFA	FA	NFA-^
Transition	Non deterministic	Deterministic	Non deterministic
Power	NFA is as powerful as DFA	FA is powerful as an NFA	It's powerful as FA
Design	Easy to design due to non-determinism	More difficult to design	Allow flexibility in handling NFA problem.
Acceptance	It is difficult to find whether w $\in \mathrm{L}$ as there are several paths. Backtracking is required to explore several parallel paths.	It is easy to find whether w G Ls as transition are deterministic.	^-transition is useful in constructing a composite FA with respect to union, concatenation, and star.

Table. 2.3 Difference between FA, NFA, NFA-^

Darshon
Institute of Engineering \& Technology

22. Applying Definitions of ${ }^{\wedge}(\mathrm{S})$ and δ^{*}

Fig. 2.22 NFA-^

$$
\begin{aligned}
& \delta^{*}\left(q_{0}, \wedge\right)=\wedge\left(\left\{q_{0}\right\}\right) \\
&=\left\{q_{0}, p, t\right\} \\
& \delta^{*}\left(q_{0}, 0\right)=\wedge(\quad U \quad \delta(r, 0)) \\
& r \in \delta^{*}(q 0, \wedge) \\
&=\wedge\left(\delta\left(q_{0}, 0\right) \cup \delta(p, 0) \cup \delta(t, 0)\right) \\
&=\wedge^{\wedge}(\emptyset \cup\{p\} \cup\{u\}) \\
&={ }^{\wedge}(\{p, u\}) \\
&=\{p, u\} \\
& \\
&=\wedge(\quad \cup \quad \delta(p, 1)) \\
& r \in \delta^{*}(q 0,0) \\
&=\wedge(\delta(p, 1) \cup \delta(u, 1)) \\
&=\wedge(\{r\}) \\
&=\{r\} \\
&\left.\delta_{0}^{*}, 01\right) \\
&=\wedge\left(q_{0}, 010\right) \quad U \\
& r \in \delta^{*}(q 0,01) \\
&=\wedge(\delta(p, 0) \\
&=\wedge(\{s\}) \\
&=\left\{s, w, q_{0}, p, t\right\}
\end{aligned}
$$

23. Conversion from NFA to FA.

Fig. 2.23 NFA

$\delta^{*}(1, \mathrm{a})$	$=\{2,3\}$			
$\delta^{*}(1, \mathrm{~b})$	$=\{4\}$			
$\delta^{*}(\{2,3\}, \mathrm{a})$	$=\delta(2, \mathrm{a}) \cup \delta(3, \mathrm{a})$	\mathbf{q}	$\delta(\mathbf{q}, \mathrm{a})$	$\boldsymbol{\delta (q , b)}$
	$=\{4\}$	1	$\{2,3\}$	$\{4\}$
$\delta^{*}(\{2,3\}, \mathrm{b})$	$=\delta(2, \mathrm{~b}) \cup \delta(3, \mathrm{~b})$	2	$\{\varnothing\}$	$\{4\}$
	$=\{3,4\}$	3	$\{4\}$	$\{3\}$
$\delta^{*}(4, \mathrm{a})$	$=\{\varnothing\}$,	4	$\{\varnothing\}$	$\{\varnothing\}$

$\delta^{*}(4, \mathrm{~b})=\{\varnothing\}$
$\delta^{*}(\{3,4\}, a)=\delta(3, a) \cup \delta(4, a)$
Table. 2.4 Transition Table
$\delta^{*}(\{3,4\}, b)=\{4\}$
$\delta^{*}(\{3,4\}, b)=\delta(3, b) \cup \delta(4, b)$
$=\{3\}$
$\delta^{*}(3, a)=\{4\}$
$\delta^{*}(3, b)=\{3\}$

Fig. 2.24 Finite Automata

24. Convert NFA - ^ to FA

\mathbf{q}	$\boldsymbol{\delta}(\mathbf{q}, \boldsymbol{\wedge})$	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{0})$	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{1})$
A	$\{B\}$	$\{A\}$	\varnothing
B	$\{D\}$	$\{C\}$	\varnothing
C	\varnothing	\varnothing	$\{B\}$
D	\varnothing	$\{D\}$	\varnothing

Table. 2.5 Transition Table

Fig. $\mathbf{2 . 2 5}$ NFA-^

$$
\begin{aligned}
& \delta^{*}(A, \wedge) \quad=\{A, B, D\} \\
& \delta^{*}(A, 0) \quad=\quad \wedge(U \quad \delta(r, 0)) \\
& r \in \delta^{*}(A, \wedge) \\
& =\wedge(U \quad \delta(r, 0)) \\
& r \in(A, B, D) \\
& =\wedge(\delta(A, 0) \cup \delta(B, 0) \cup \delta(D, 0)) \\
& =\wedge\{A, C, D\} \\
& =\{A, B, C, D\} \\
& \delta^{*}(\mathrm{~A}, 1) \quad=^{\wedge}(\mathrm{U} \quad \delta(r, 1)) \\
& r \in \delta^{*}(A, \wedge) \\
& =\wedge(U \quad \delta(r, 1)) \\
& r \in(A, B, D) \\
& =\wedge(\delta(A, 1) \cup \delta(B, 1) \cup \delta(D, 1)) \\
& \text { = } \varnothing
\end{aligned}
$$

$\delta^{*}(B, \wedge)=\{B, D\}$
$\delta^{*}(B, 0)=\wedge(U \quad \delta(r, 0))$
$r \in \delta^{*}(B, \wedge)$
$=\wedge(U \quad \delta(r, 0))$ $r \in \delta(B, D)$
$=\wedge(\delta(B, 0) \cup \delta(D, 0))$
$=\wedge\{C, D\}$
$=\{C, D\}$
$\delta^{*}(B, 1) \quad \wedge^{\wedge}\left(\underset{r \in \delta^{*}(B, \wedge)}{U} \delta(r, 1)\right)$

$$
r \in \delta^{*}(B, \wedge)
$$

$$
\begin{aligned}
& =\wedge(\quad U \quad \delta(r, 1)) \\
& r \in(B, D) \\
& =\wedge(\delta(B, 1) \cup \delta(D, 1)) \\
& \text { = } \varnothing \\
& \delta^{*}(\mathrm{C}, \wedge) \quad=\{\mathrm{C}\} \\
& \delta^{*}(C, 0) \quad=\wedge(\mathrm{U} \quad \delta(r, 0)) \\
& r \in \delta^{*}(C, \wedge) \\
& =\wedge(U \quad \delta(r, 0)) \\
& r \in(C) \\
& =\wedge(\delta(C, 0)) \\
& \text { = } \varnothing \\
& \delta^{*}(\mathrm{C}, 1) \quad=^{\wedge}(\mathrm{U} \quad \delta(\mathrm{r}, 1)) \\
& r \in \delta^{*}(C, \wedge) \\
& =\wedge(U \quad \delta(r, 1)) \\
& r \in(C) \\
& =\wedge(\delta(C, 1)) \\
& \left.=\wedge \text { }{ }^{\wedge}\right\} \\
& =\{B, D\} \\
& \delta^{*}(D, \wedge)=\{D\} \\
& \left.\delta^{*}(\mathrm{D}, 0) \quad=\wedge(\mathrm{U}) \quad \delta(\mathrm{r}, 0)\right) \\
& r \in \delta^{*}\left(D,{ }^{\wedge}\right) \\
& =\wedge(\delta(D, 0)) \\
& =\{\mathrm{D}\} \\
& \delta^{*}(D, 1) \quad=\wedge(U \quad \delta(r, 1)) \\
& r \in \delta^{*}(D, \wedge) \\
& =\wedge(\underset{r \in(D)}{U} \delta(r, 1)) \\
& =\wedge(\delta(D, 1)) \\
& \text { = } \varnothing
\end{aligned}
$$

Fig. 2.26 NFA

$\delta(\{A\}, 0)$	$=\{A, B, C, D\}$
$\delta(\{A\}, 1)$	$=\varnothing$
$\delta(\{A, B, C, D\}, 0)$	
	$=(\delta(A, 0) \cup \delta(B, 0) \cup \delta(C, 0) \cup \delta(D, 0))$
$\delta(\{A, B, C, D\}, 1)$	$=\{A, B, C, D\}$
	$=(\delta(A, 1) \cup \delta(B, 1) \cup \delta(C, 1) \cup \delta(D, 1))$
$\delta(\{B, D\}, 0)$	$=\{B, D\}$
$\delta(\{B, D\}, 1)$	$=(\delta(B, 0) \cup \delta(D, 0))$
	$=\{C, D\}$
$\delta(\{C, D\}, 0)$	
	$=(\delta(B, 1) \cup \delta(D, 1))$
$\delta(\{C, D\}, 1)$	
	$=(\delta(C, 0) \cup \delta(D, 0))$
$\delta(\{D\}, 0)$	
$\delta(\{D\}, 1)$	
	$=\{\delta(C, 1) \cup \delta(D, 1))$
	$=\{B, D\}$

Fig. 1.27 Finite Automata

25. Convert NFA - ^ to FA

\mathbf{q}	$\boldsymbol{\delta}(\mathbf{q}, \boldsymbol{\wedge})$	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{0})$	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{1})$
A	$\{B, D\}$	$\{A\}$	\varnothing
B	\varnothing	$\{C\}$	$\{E\}$
C	\varnothing	\varnothing	$\{B\}$
D	\varnothing	$\{E\}$	$\{D\}$
E	\varnothing	\varnothing	\varnothing

Table 2.6. Transition Table

Fig. 2.28 NFA -^
$\delta^{*}(A, \wedge) \quad=\{A, B, D\}$
$\left.\delta^{*}(\mathrm{~A}, 0) \quad=\wedge(\mathrm{U}) \quad \delta(\mathrm{r}, \mathrm{O})\right)$
$r \in \delta^{*}\left(A,{ }^{\wedge}\right)$
$=^{\wedge}(\mathrm{U} \quad \delta(r, 0))$
$r \in \delta(A, B, D)$
$=\wedge(\delta(A, 0) \cup \delta(B, 0) \cup \delta(D, 0))$
$=\wedge\{A, C, E\}$
$=\{A, B, C, D, E\}$
$\delta^{*}(\mathrm{~A}, 1) \quad=\wedge(\mathrm{U} \quad \delta(\mathrm{r}, 1))$ $r \in \delta^{*}(A, \wedge)$
$=\wedge(U \quad \delta(r, 1))$
$r \in(A, B, D)$
$=\wedge(\delta(A, 1) \cup \delta(B, 1) \cup \delta(D, 1))$
$=\wedge(E, D)$
$=\{E D\}$
$\delta^{*}\left(B,{ }^{\wedge}\right)=\{B\}$
$\delta^{*}(B, 0) \quad=\wedge(\quad U \quad \delta(r, 0))$
$r \in \delta^{*}(B, \wedge)$
$=\wedge(U \quad \delta(r, 0))$
$r \in \delta(B)$
$=\wedge(\delta(B, 0))$
$=\wedge\{C\}$
$=\{C\}$
$\delta^{*}(B, 1) \quad=\wedge(\cup \quad \delta(r, 1))$
$r \in \delta^{*}(B, \wedge)$

Fig. 2.29 NFA

$\delta(\{A\}, 0)$	$=\{A, B, C, D, E\}$
$\delta(\{A\}, 1)$	$=\{E D\}$
$\delta(\{A, B, C, D, E\}, 0)$	$\begin{aligned} & =(\delta(A, 0) \cup \delta(B, 0) \cup \delta(C, 0) \cup \delta(D, 0) \cup \delta(E, 0)) \\ & =\{A, B, C, D, E\} \end{aligned}$
$\delta(\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}, 1)$	$\begin{aligned} & =(\delta(A, 1) \cup \delta(B, 1) \cup \delta(C, 1) \cup \delta(D, 1) \cup \delta(E, 0)) \\ & =\{E, B, D\} \end{aligned}$
$\delta(\{E, D\}, 0)$	$\begin{aligned} & =(\delta(E, 0) \cup \delta(D, 0)) \\ & =\{\varnothing\} \cup\{E\} \\ & =\{E\} \end{aligned}$
$\delta(\{E, D\}, 1)$	$\begin{aligned} & =(\delta(E, 1) \cup \delta(D, 1)) \\ & =\{\varnothing\} \cup\{D\} \\ & =\{D\} \end{aligned}$
$\delta(\{\mathrm{B}, \mathrm{E}, \mathrm{D}\}, 0)$	$\begin{aligned} & =(\delta(B, 0) \cup \delta(E, 0) \cup \delta(D, 0)) \\ & =\{C, E\} \end{aligned}$
$\delta(\{\mathrm{B}, \mathrm{E}, \mathrm{D}\}, 1)$	$\begin{aligned} & =(\delta(E, 1) \cup \delta(D, 1)) \\ & =\{D, E\} \end{aligned}$
$\delta(\{C, E\}, 0)$	$\begin{aligned} & =(\delta(C, 0) \cup \delta(E, 0)) \\ & =\varnothing \end{aligned}$
$\delta(\{C, E\}, 1)$	$\begin{aligned} & =(\delta(C, 1) \cup \delta(E, 1)) \\ & =\{B\} \end{aligned}$
$\delta(\{D\}, 0)$	$=\{\mathrm{E}\}$
$\delta(\{D\}, 1)$	$=\{\mathrm{D}\}$
$\delta(\{B\}, 0)$	$=\{\mathrm{C}\}$
$\delta(\{B\}, 1)$	$=\{\mathrm{E}\}$
$\delta(\{E\}, 0)$	= \varnothing
$\delta(\{E\}, 1)$	= \varnothing

Institute of Engineering \& Technology

Unit 2 - Regular Languages \& Finite Automata

$\delta(\{C\}, 0)$	$=\varnothing$
$\delta(\{C\}, 1)$	$=\{B\}$

Fig.2.30 Finite Automata

Kleene's Theorem Part-1 or

26. Prove: Any Regular Language can be accepted by finite automata.

Proof:

- On the basis of statement L can be recognized by FA, NFA and NFA-^. It is sufficient to so that every regular language can be accepted by NFA- \wedge.
- Set of regular language over alphabet Σ contains the basic languages. $\varnothing,\{\wedge\}$ and $\{a\}(a \in \Sigma)$ to be closed under operation of union, concatenation, and Kleene*.
- This allows us to prove using structural induction that every regular language over Σ can be accepted by an NFA-^.
- The basis step of the proof is to show that the three basic languages can be accepted by NFA${ }^{\wedge} \mathrm{s}$.
- The induction hypothesis is that L1 and L2 are languages that can be accepted by NFA-^s, and the induction step is to show that L1 U L2, L1L2, and $\mathrm{L}_{1}{ }^{*}$ can also be accepted by NFA-^s.
- NFA-^ for the three basic languages is shown below.

\varnothing

$\left\{^{\wedge}\right\}$

\{a\}

Unit 2 - Regular Languages \& Finite Automata

Fig. 2.31 Basic Languages for NFA-^

- Now, suppose that L1 and L2 are recognized by the NFA-^s M1 and M2, respectively, where for both $i=1$ and $i=2$,

$$
M_{i}=\left(Q_{i}, \varepsilon, q_{i}, A_{i}, \delta_{i}\right)
$$

- By renaming state if necessary, we may assume that Q1 $\cap \mathrm{Q} 2=\varnothing$. We will construct $N F A-\wedge s$ M_{U}, M_{c}, and M_{k} recognizing the language $L 1 \cup L 2, L 1 L 2$, and $L_{1}{ }^{*}$, respectively.

Construction Of M_{u}

Fig. 2.32 Construction Of M_{u}

- Construction of $M_{u}=\left(Q_{u}, \varepsilon, q_{u}, A_{u}, \delta_{u}\right)$. Let q_{u} be a new state, not in either Q1 or $Q 2$ and let

$$
\begin{aligned}
& Q_{u}=Q 1 \cup Q 2 \cup\left\{q_{u}\right\} \\
& A_{u}=A 1 \cup A 2
\end{aligned}
$$

- Now, we define δ_{u} so that M_{u} can move from its initial state to either q1 or q2 by a \wedge transition, and then make exactly the same moves that the respective M_{i} would. Normally we define:

$$
\begin{aligned}
& \delta_{u}\left(q_{u}, \wedge\right)=\{q 1, q 2\} \\
& \delta_{u}\left(q_{u}, a\right)=\varnothing \text { for every } a \in \varepsilon \\
& \text { And for each } q \in Q 1 \cup Q 2 \text { and } a \in \varepsilon \cup\{\wedge\}, \\
& \delta_{u}\left(q_{u}, a\right)=\left\{\delta_{1}(q, a) \text { if } q \in Q 1\right\} \text { and }\left\{\delta_{2}(q, a) \text { if } q \in Q 2\right\}
\end{aligned}
$$

- For either value of i, if $x \in L_{i}$, then M_{u} can process x by moving to q_{i} on a ${ }^{\wedge}$-transition and then executing the moves that cause M_{i} to accept x, on the other hand, if x is accepted by M_{u} there is a sequence of transition corresponding to x, starting at q_{u} and ending at an element of A1 or A2. The first of these transition must be a ^-transition from q_{u} to either q1 or q2, since there are no other transition from q_{u}. therefore, since $Q 1 \cap Q 2=\varnothing$, either all the transition are between of Q 1 or all are between elements of Q_{2}. It follow that x must be accepted by either M1 or M2.

Construction Of $\mathbf{M}_{\mathbf{c}}$

- Construction of $M_{c}=\left(Q_{c}, \varepsilon, q_{c}, A_{c}, \delta_{c}\right)$. In this case we do not need any new states, Let $Q_{c}=Q 1$ U Q2, $q_{c}=q_{1}$, and $A_{c}=A_{2}$. The transition will include all those of $M 1$ and $M 2$ as well as a ε transition from each state in A_{1} to q_{2}.
- In other words, for any q not in A1, and $\alpha \in \varepsilon U\{\wedge\}, \delta_{c}(q, a)$ is defined to be either $\delta_{1}(q, a)$ or $\delta_{2}(q, a)$, depending on whether q is in Q1 and Q2, for $q \in A 1$.

Unit 2 - Regular Languages \& Finite Automata

Fig. 2.33 Construction Of M_{c}

- On an input string $\times 1 \times 2$, where $x_{i} \in L_{i}$ for both value of i, M_{c} can process $\times 1$, arriving at a state A1; jump from this state to $q 2$ by a ^-transition; and then process $\times 2$ the way M 2 would, So that $x 1 \times 2$ is accepted. Conversely, if x is accepted by M_{c}, there is a sequence of transition corresponding to x that begins at $q 1$ and ends at an element of A2. One of them must therefore be from an element of Q1 to an element Q2, and according to the definition of δ_{c}, this can only be a \wedge - transition from an element of $A 1$ to $q 2$. Because $Q 1 \cap Q 2=\varnothing$, all the previous transition are between elements of Q1 and all the subsequent ones are between elements of Q2. It follows that $x=x 1^{\wedge} x 2=x 1 \times 2$, where $x 1$ is accepted by $M 1$ and $x 2$ is accepted by M2; in other words, $x \in \operatorname{L1L2}$.

Construction Of $\mathbf{M}_{\mathbf{k}}$

Fig. 2.34 Construction Of $\mathbf{M}_{\mathbf{k}}$

- Construction of $M_{k}=\left(Q_{k}, \Sigma, q_{k}, A_{k}, \delta_{k}\right)$. Let q_{k} be a new state not in Q1 and let $Q_{k}=Q 1 U\left\{q_{k}\right\}$. Once again all the transitions of M 1 will be allowed in M_{k}, but in addition there is a $\wedge^{\text {- }}$ transition from q_{k} to q_{1} and there is a \wedge-transition from each elements of $A 1$ to q_{k}. More precisely,

$$
\begin{aligned}
& \delta_{k}\left(q_{k}, \wedge\right)=\{q 1\} \text { and } \delta_{k}\left(q_{k}, a\right)=\varnothing \text { for } a \in \varepsilon . \\
& \text { for } q \in A 1, \delta_{k}\left(q_{k}, \wedge\right)=\delta_{k}\left(q_{k}, \wedge\right) \cup\left\{q_{k}\right\} .
\end{aligned}
$$

- Suppose $x \in L 1^{*}$. if $x=\wedge$ then clearly x is accepted by M_{k}. Otherwise, for some $m \geq 1, x=x 1 \times 2 \ldots . \ldots x m$,

Dedicated Faculty Comunitted Education
Institute of Engineering \& Technology

Unit 2 - Regular Languages \& Finite Automata

where xi $\in L 1$ for each i, M_{k} can move from qk to q1 by a $\wedge^{\text {-transition; for each } i, ~} \mathrm{M}_{\mathrm{k}}$ moves from q1 to an element f_{i} of A1 by a sequence of transition corresponding to x_{i}; and for each i, M_{k} then moves from f_{i} back to $q k$ by a \wedge-transition.

- It follows that (^x1^) (^x2^)...... ($\left.{ }^{\wedge} x m^{\wedge}\right)=x$ is accepted by M_{k}. On the other hand, if x is accepted by M_{k}, there is a sequence of transition corresponding to x that begins and ends at q_{k}. Since the only transition from qk is a ${ }^{\wedge}$-transition to $q 1$, and the only transition to $q k$ are ${ }^{\wedge}$ transition from elements of A1, x can be decomposed in the form

$$
x=\left(\wedge x 1^{\wedge}\right)\left(\wedge x 2^{\wedge}\right) \ldots . . .\left(\wedge x m^{\wedge}\right)
$$

- Where, for each i, there is a sequence of transition corresponding to x_{i} from $q 1$ to an element of A1. Therefore, $x \in \operatorname{L1*}$.
- Since we have constructed an NFA-^ recognizing L in each of the three cases, the proof is complete.

27. Draw NFA-^ for following regular expression.

1. $(00+1)^{*}(10)^{*}$

\wedge

Fig. 2.35 NFA-^ for ($00+1$) ${ }^{*}(10)^{*}$
2. $(0+1)^{*}(10+01)^{*} 11$

Fig. 2.36 NFA-^ for $(0+1) *(10+01) * 11$
3. $(0+1)^{*}(10+110)^{*} 1$

Fig. 2.37 NFA-^ for($0+1$)* $(10+110)^{*} 1$

28. Finite Automata with Output.

- Finite automata has limited capability of either accepting a string or rejecting a string.
- Accepance of string was based on the reachability of a machine from starting state to final state. Finite automata can also be used as an output device.
- Such machines do not have a final state.
- Machine generates output on every input.
- There are two types of automata with outputs:

1. Moore machine
2. Mealy machine

Dedieated Faculty Committed Edncation
Institute of Engineering \& Technology

Unit 2 - Regular Languages \& Finite Automata

29. Moore Machine

- Mathematiically moore machine is a six tuple machine and define as Mo=($\left.Q, \Sigma, \Delta, \delta, \lambda^{\prime}, q_{0}\right)$ where
Q: A Nonempty finite set of state in Mo
Σ : A Nonempty finite set of input symbols
Δ : A Nonempty finite set of outputs
δ : It is transition function which takes two arguments as in finite automata, one is input state and other is input symbol. The output of this function is a single state, so clearly δ is the function which is responsible for the transition of Mo.
λ^{\prime} : it is a mapping function which maps Q to Δ, giving the output associated with each state.
q_{0} : Is the initial state of Mo and $\mathrm{q}_{0} \in \mathrm{Q}$.
Examples of Moore Machine

1. Design a moore machine for the 1 's compliment of binary number.

1
Fig. 2.38 Moore M/c for 1's compliment
2. Design a moore machine to count occurance of "ab" as substring.

Fig. 2.39 Moore M/c to count occurances of ab
3. Construct a moore machine that takes set of all strings over $\{0,1\}$ and produces ' A ' if i / p ends witg ' 10 ' or produces ' B ' if i / p ends with ' 11 ' otherwise produces ' C '.

Unit 2 - Regular Languages \& Finite Automata

Fig. 2.40 Moore M / c for string ending in 10 or 11
4. Construct a moore machine that takes binary number as an i / p and produces residue modulo ' 3 ' as an output.

	0	1	Δ
$q 0$	$q 0$	$q 1$	0
$q 1$	$q 2$	$q 0$	1
$q 2$	$q 1$	$q 2$	2

Table 2.7transition Table

Fig. 2.41 Moore M/c to produces residue modulo ' 3 ’

30. Mealy Machine

- It is a finite automata in which output is associated with each transition.
- Mathematiically mealy machine is a six tuple machine and define as $\mathrm{Me}=\left(\mathrm{Q}, \Sigma, \Delta, \delta, \lambda^{\prime}, \mathrm{q}_{0}\right)$ where
Q: A Nonempty finite set of state in Me
Σ : A Nonempty finite set of input symbols
Δ : A Nonempty finite set of outputs
δ : It is transition function which takes two arguments as in moore machine, one is input state and other is input symbol. The output of this function is a single state, so clearly δ is the function which is responsible for the transition of Me.
λ^{\prime} : it is a mapping function which maps $Q \times \Sigma$ to Δ, giving the output associated with each transition.
q_{0} : Is the initial state of Me and $\mathrm{q}_{0} \in \mathrm{Q}$.

Examples of Mealy Machine

1. Design a mealy machine for the 1 's compliment of binary number.

Fig. 2.42 Mealy M/c for 1's compliment of binary

Darshan
Institute of Engineering \& Technology

Unit 2 - Regular Languages \& Finite Automata

2. Design a mealy machine for regular expression (0+1)*(00+11).

Fig. 2.43 Mealy M/c for ($0+1$)* $(00+11)$
3. Design a mealy machine where $\Sigma=\{0,1,2\}$ print residue modulo 5 of input treated as ternary (base 3).

Fig. 2.44 Mealy M/c to produces residue modulo ' 5 '

31. Explain procedure to minimize Finite Automata

S-1: Make final state and non-final state as distinguish.

Unit 2 - Regular Languages \& Finite Automata

S-2: Recursively interacting over the pairs of state for any transition for

$$
\begin{aligned}
& \delta(p, x)=r \\
& \delta(q, x)=s
\end{aligned}
$$

and for $x \in \varepsilon$. If r and s are distinguishable make p and q as distinguish.
S-3: If any iteration over all possible state pairs one fails to find a new pair of states that are distinguishable terminate.
S-4: All the states that are not distinguished are equivalence.

32. For following FA find minimized FA accepting same language.

Fig. 2.45 Finite Automata

Final state is $\{6\}$
And, Non-Final state is $\{1,2,3,4,5,7\}$
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,7)$ are distinguish pairs.
Consider pair (1,2)

$$
\delta(1, a)=2 \quad \delta(1, b)=3
$$

$$
\delta(2, a)=4 \quad \delta(2, b)=5
$$

Consider pair (1,3)

$$
\begin{array}{ll}
\delta(1, a)=2 & \delta(1, b)=3 \\
\delta(3, a)=6 & \delta(3, b)=7
\end{array}
$$

pair $(2,6)$ is distinguish, so It's a distinguished pair.
Consider pair (1,4)

$$
\begin{array}{ll}
\delta(1, a)=2 & \delta(1, b)=3 \\
\delta(4, a)=4 & \delta(4, b)=5
\end{array}
$$

Consider pair $(1,5)$

$$
\begin{array}{ll}
\delta(1, a)=2 & \delta(1, b)=3 \\
\delta(5, a)=6 & \delta(5, b)=7
\end{array}
$$

pair $(2,6)$ is distinguish, so It's a distinguished pair.
Consider pair $(1,7)$
$\delta(1, a)=2 \quad \delta(1, b)=3$
$\delta(7, a)=6 \quad \delta(7, b)=7$
pair $(2,6)$ is distinguish, so It's a distinguished pair.
Consider pair $(2,3)$

$\delta(2, a)=4$	$\delta(2, b)=5$
$\delta 3(, a)=6$	$\delta(3, b)=7$

pair $(4,6)$ is distinguish, so It's a distinguished pair.
Consider pair $(2,4)$

$$
\delta(2, a)=4 \quad \delta(2, b)=5
$$

$$
\delta(4, a)=4 \quad \delta(4, b)=5
$$

Consider pair $(2,5)$
$\delta(2, a)=4 \quad \delta(2, b)=5$
$\delta(5, a)=6 \quad \delta(5, b)=7$
pair $(4,6)$ is distinguish, so It's a distinguished pair.
Consider pair $(2,7)$

$\delta(2, a)=4$	$\delta(2, b)=5$
$\delta(7, a)=6$	$\delta(7, b)=7$

pair $(4,6)$ is distinguish, so It's a distinguished pair.
Consider pair $(3,4)$

$\delta(3, a)=6$	$\delta(3, b)=7$
$\delta(4, a)=4$	$\delta(4, b)=5$

pair $(6,4)$ is distinguish, so $(3,4)$ is distinguish.
Consider pair $(3,5)$
$\delta(3, a)=6 \quad \delta(3, b)=7$
$\delta(5, a)=6 \quad \delta(5, b)=7$
Consider pair $(3,7)$
$\delta(3, a)=6 \quad \delta(3, b)=7$
$\delta(7, a)=6 \quad \delta(7, b)=7$
Consider pair $(4,5)$
$\delta(4, a)=4 \quad \delta(4, b)=5$

Dedicated Faculty, Committed Edmeation
Institute of Engineering \& Technology

Unit 2 - Regular Languages \& Finite Automata

$$
\delta(5, a)=6 \quad \delta(5, b)=7
$$

pair $(6,4)$ is distinguish, so $(4,5)$ is distinguish.
Consider pair $(4,7)$

$$
\begin{array}{ll}
\delta(4, a)=4 & \delta(4, b)=5 \\
\delta(7, a)=6 & \delta(7, b)=7
\end{array}
$$

pair $(6,4)$ is distinguish, so $(4,7)$ is distinguish.
Consider pair $(5,7)$

$$
\begin{array}{ll}
\delta(5, a)=6 & \delta(5, b)=7 \\
\delta(7, a)=6 & \delta(7, b)=7
\end{array}
$$

Fig. 2.46 Minimized Finite Automata

33. Define pumping lemma and its application.

Suppose L is a regular language. Then there is an integer n so that for any $x \in L$ with $|x|>=n$, there are strings u, v, and w so that

1. $x=u v w$
2. $|u v|<=n$
3. $|v|>0$
4. For any $m>=0, u v^{m} w \in L$

Application: (Explain the application of the Pumping Lemma to show a Language is Regular or Not) The pumping lemma is extremely useful in proving that certain sets are non-regular. The general methodology followed during its applications is :

- Select a string z in the language L.
- Break the string z into x, y and z in accordance with the above conditions imposed by the pumping lemma.
- Now check if there is any contradiction to the pumping lemma for any value of i.

34. Use the pumping lemma to show that following language is not regular: $L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$

Step 1: Let us assume that L is regular and L is accepted by an FA with n states.
Step 2: Let us chose the string
$\omega=\frac{a^{n} b}{\omega} \frac{a^{n} b}{\omega}$

$$
|\omega|=2 n+2>=n
$$

Let us write w as $x y z$ with

Unit 2 - Regular Languages \& Finite Automata

$|y|>0$
And $|x y|<=n$
Since $|x y|<=n, x$ must be of the form a^{s}.
Since $|x y|<=n, y$ must be of the form $a^{r} \mid r>0$
Now $\quad \omega=a^{n} b a^{n} b=\frac{a^{s}}{x} \frac{a^{r}}{y} a^{n-s-r} b a^{n} b$
Step 3: Let us check whether $x y^{i} z$ for $i=2$ belongs to L.
$X y^{2} z=a^{5} a^{2 r} a^{n-s-r} b a^{n} b=a^{n+r} b a^{n} b$
Since, $r>0, a^{n+r} b a^{n} b$ is not of the form $\omega \omega$ as the number of $a^{\prime} s$ in the first half is $n+r$ and second half is n. Therefore, $x y^{2} z \notin L$. Hence by contrdiction we can say language is not regular.

35. Prove that the language $L=\left\{0^{n}\right.$: n is a prime number $\}$ is not regular.

Step 1: Let us assume that L is regular and L is accepted by an FA with n states.
Step 2: Let us chose the string

$$
\begin{aligned}
& \omega=a^{p}, \text { where } p \text { is prime and } p>n \\
& |\omega|=\left|a^{p}\right|=p>=n
\end{aligned}
$$

Let us write w as $x y z$ with
$|y|>0$
And $|x y|<=n$
Since $|x y|<=n, x$ must be of the form a^{s}.
We assume that $y=a^{m}$ for $m>0$.
Step 3: Length of $x y^{i} z$ can be written as given below.
$X y^{i} z=|x y z|+\left|y^{i-1}\right|=p+(i-1) m$
As $|y|=\left|a^{m}\right|=m$
Let us check whether $\mathrm{P}(\mathrm{i}-1) \mathrm{m}$ is prime for every i .
For $i=p+1, p+(i-1) m=P+P_{m}=P(1+m)$
So $x y^{p+1} z \notin L$. Hence by contrdiction we can say language is not regular.

36. Use Pumping Lemma to show that following language is not regular. $L=\left\{w^{R} / \mathbf{w} \varepsilon\{0,1\}^{*}\right\}$

Step 1: Let us assume that L is regular and L is accepted by an FA with n states.
Step 2: Let us chose the string

$$
\omega=\frac{a^{n} b}{\omega} \frac{b a^{n}}{\omega^{R}}
$$

$$
|\omega|=2 n+2>=n
$$

Let us write w as xyz with
$|y|>0$
And $|x y|<=n$
Since $|x y|<=n, x$ must be of the form a^{s}.
Since $|x y|<=n, y$ must be of the form $a^{r} \mid r>0$
Now

$$
\omega=a^{n} b b a^{n}=\frac{a^{s}}{x} \frac{a^{r}}{y} a^{n-s-r} b b a^{n}
$$

Unit 2 - Regular Languages \& Finite Automata

Step 3: Let us check whether $\mathrm{x}^{\mathrm{i}} \mathrm{z}$ for $\mathrm{i}=2$ belongs to L .
$X y^{2} z=a^{s} a^{2 r} a^{n-s-r} b b a^{n}=a^{n+r} b b a^{n}$
Since, $r>0, a^{n+r} b b a^{n}$ is not of the form $\omega \omega^{R}$ as the string starts with ($n+r$) a's but ends in (n) $a^{\prime} s$. Therefore, $X y^{2} z \notin L$. Hence by contrdiction we can say language is not regular.

