
 Unit 3 – Context Free Grammar

 1

 Dixita Kagathara, CE Department | 2160704 – Theory of Computation

1. Define: Context Free Grammar & Context Free Language.
 Context Free Grammar:

A context free grammar is a 4-tuple G=(V,Ʃ,S,P) where,
 V is finite set of non terminals,
 Ʃ is disjoint finite set of terminals,
 S is an element of V and it’s a start symbol,
 P is a finite set formulas of the form Aα where A ∈ V and α∈ (V U Ʃ)*.
Application of Context Free Grammar(CFG):

1) CFG are extensively used to specify the syntax of programming language.
2) CFG is used to develop a parser.

Context Free Language:
Language generated by CFG is called context free language.
 Let G= (V, Ʃ, S, P) be a CFG. The Language generated by G is
 L(G) : {x ∈Ʃ*/S⟹G* x}
 A language L is a context free Language(CFL) if, there is a CFG G so that L=L(G)

2. Define: Regular Grammar.
 A grammar G=(V,Ʃ,S,P) is regular if every production takes one of the two forms,

 BaC
 Ba
Where B and C are Nonterminals and a is terminal.

3. Give Recursive Definitions for following.
 I. Recursive Definition of {a,b}*

1. ˄∈L.
2. For any S∈L, Sa∈L.
3. For any S∈L, Sb∈L.
4. No other strings are in L.

II. Recursive Definition of Palindrome (pal)
1. ˄, a, b ∈ pal
2. For any S ∈ pal , aSa ∈ pal and bSb ∈ pal
3. No other string are in pal

III. The language {anbn / n≥0}
1. ˄∈ L
2. For every x ∈ L, axb ∈L
3. No other strings are in L

4. Write CFG for following.
 1) Write CFG for ab*

SaX
X˄| bX

2) Write CFG for a*b*

 Unit 3 – Context Free Grammar

 2

 Dixita Kagathara, CE Department | 2160704 – Theory of Computation

SXY
XaX|˄
YbY|˄

3) Write CFG for (011+1)*(01)*
SAB
A011A | 1A | ^
B01B | ^

4) Write CFG which contains at least three times 1.
SA1A1A1A
A0A | 1A | ^

5) Write CFG that must start and end with same symbol.
S0A0 | 1A1

 A0A | 1A | ^
6) The language of even & odd length palindrome string over {a,b}

SaSa|bSb|a|b|˄
7) No. of a and no. of b are same

SaSb|bSa|˄
8) Write CFG for regular expression (a+b)*a(a+b)*a(a+b)*
 SXaXaX

XaX|bX|˄
9) Write CFG for L={aibjck | i=j or j=k}

For i=j for j=k
S->AB S->CD
A->aAb | ab C->aC | a
B->cB | c D->bDc | bc

10) Write CFG for L={ aibjck | j>i+k}
SABC
AaAb |˄
BbB | b
CbCc |˄

11) Write CFG for L={ 0i1j0k | j>i+k}
SABC
A0A1 |˄
B1B | 1
C1C0 |˄

5. Define: Types of Derivation & Ambiguity.
 There are mainly two types of derivations.

1. Left most derivation
2. Right most derivation

Let Consider the CFG with the Production SS+S | S-S | S*S | S/S |(S)| a

 Unit 3 – Context Free Grammar

 3

 Dixita Kagathara, CE Department | 2160704 – Theory of Computation

Left Most Derivation Right Most Derivation

A derivation of a string W in a grammar G is
a Left most derivation if at every step the
left most nonterminal is replaced

A derivation of a string W in a grammar G is
a Right most derivation if at every step the
right most nonterminal is replaced

Consider string a*a-a
SS-S
S*S-S
a*S-S
a*a-S
a*a-a

Consider string: a-a/a
 SS-S

S-S/S
S-S/a
S-a/a
a-a/a

Equivalent left most derivation tree

Equivalent Right most derivation tree

Table 3.1 Difference between left most & right most derivation

An Ambiguous CFG :
A context free grammar G is ambiguous if there is at least one string in L(G) having two or more
distinct derivation tree. (or, equivalently two or more distinct leftmost derivation or rightmost
derivation)

1) Prove that given grammar is ambiguous. SS+S | S-S | S*S | S/S | (S) |a
 String : a+a+a

 SS+S SS+S
 a+S S+S+S
 a+S+S a+S+S
 a+a+S a+a+S
 a+a+a a+a+a

Fig. 3.1 Two left most derivation tree for string a+a+a

S

S

S

S

+

a

S +

a

a

S

S

S

S +

a

S +

a

a

S

S

S

S

-

a

S /

a

a S

S S

S

-

a

S *

a

a

 Unit 3 – Context Free Grammar

 4

 Dixita Kagathara, CE Department | 2160704 – Theory of Computation

 Here, we have two left most derivation for string a+a+a hence, above grammar is
ambiguous.

2) Prove that S->a | Sa | bSS | SSb | SbS is ambiguous
String: baaab

 SbSS SSSb
 baS bSSSb
 baSSb baSSb
 baaSb baaSb
 baaab baaab

 We have two left most derivation for string baaab hence, above grammar is ambiguous.

6. Conversion from Finite Automata to Grammar.

Fig. 3.2 Finite Automata

Equivalent CFG
 A0A
 A1B
 B1B
 B0C
 B0
 C0A
 C1B

7. Backus-Naur Form (BNF)
 BNF is one of the notation techniques for context free grammar.

 It is often used to describe syntax of the language used in computing.

 BNF is shorthand notation for CFG.

 Following grammar uses the notation known as Backus Naur Form. Here, variables written
between <..> are non terminals and vertical bar ‘|’ indicating a alternate choice. Apart from
the familiar notation =, | and <..>, a new element here is […], which is used to enclosed an
optional specification.

Example:
 <exp>=<exp> + <term> | <term>
 <term>=<term> * <factor> | <factor>

A B
1

C
0

0
1

1

0

 Unit 3 – Context Free Grammar

 5

 Dixita Kagathara, CE Department | 2160704 – Theory of Computation

 <factor>=<factor> ^ <primary> | <primary>
 <primary>=<id> | <const>
 <id>=<letter>
 <const>=[+/-]<digit>
 <letter>=a | b | c |……| z
 <digit>=0 | 1 |………….| 9

8. Simplified forms & Normal forms.
 Definition: Nullable Variable

A Nullable variable in a CFG G=(V,Ʃ,S,P) is defined as follows:
1) Any variable A for which P contains A˄ is nullable.
2) if P contains production

AB1B2…..Bn where B1B2…Bn are nullable variable, then A is nullable.
3) No other variables in V are nullable.

Eliminate ˄ production :
1) SaX/Yb

XS/˄
YbY/b
Grammar after elimination of ^ production:
SaX/Yb/a

 XS
 YbY/b

2) SXaX/bX/Y
XXaX/XbX/˄
Yab
Grammar after elimination of ^ production:
SXaX/bX/Y/aX/Xa/a/b
XXaX/aX/Xa/a/XbX/Xb/bX/b
Yab

Definition: Unit Production
Unit productions are always in the form of AB. Where A & B are single non terminals.
Eliminate Unit Production:

1) SABA/BA/AA/AB/A/B
AaA/a
BbB/b
Grammar after elimination of unit production:
Unit production are SA and SB
SABA/BA/AA/AB/aA/a/bB/b
SaA/a
SbB/b

2) SAa/B
Aa/bc/B
BA/bb

 Unit 3 – Context Free Grammar

 6

 Dixita Kagathara, CE Department | 2160704 – Theory of Computation

Grammar after elimination of unit production:
Unit production are SB,AB and BA.
Aa/bc/B
Aa/bc/A/bb
Aa/bc/bb

BA/bb
Ba/bc/bb

SAa/B
SAa/a/bc/bb

So CFG after removing unit production is:
SAa/a/bc/bb
Aa/bc/bb
Ba/bc/bb

Definition: Chomsky Normal Form
A context free grammar is in Chomsky normal form (CNF) is every production is one of these two
forms:
 ABC
 Aa
Where A, B, C are nonterminals and a is terminal.
Step to convert CFG into CNF:

1) Eliminate ˄-Productions.
2) Eliminate Unit Productions.
3) Restricting the right side of productions to single terminal or string of two or more

nonterminals.
(Replace all mixed string with solid NTs)

4) Final step of CNF. (shorten the string of NT to length 2)

9. Convert following CFG to CNF:
SaX/Yb
XS/˄
YbY/b

 Step-1: Eliminate ˄-Production:
 Nullable production is X˄, new CFG without ˄-production is:
 SaX/a/Yb
 XS
 YbY/b
Step-2: Eliminate Unit Production:
 Unit Production is XS, new CFG without Unit Production is:
 SaX/a/Yb

 Unit 3 – Context Free Grammar

 7

 Dixita Kagathara, CE Department | 2160704 – Theory of Computation

 XaX/a/Yb
 YbY/b
Step-3: Replace all mixed string with solid NT:
 SAX/YB/a
 XAX/YB/a
 YBY/b
 Aa
 Bb
Step-4 : Shorten the string of NT to length 2
 All NT strings on the RHS in the above CFG are already the required length.
 So, CFG is in CNF.

10. Convert following CFG to CNF
SAACD
AaAb/˄
CaC/a
DaDa/bDb/˄

 Step-1: Eliminate ˄-Production:
 Nullable production is A˄ and D˄, new CFG without ˄-production is:
 apply for A˄
 SAACD/ACD/CD
 Aab/aAb
 CaC/a
 DaDa/bDb/˄
 apply for D˄
 SAACD/ACD/CD/AAC/AC/C
 Aab/aAb
 CaC/a
 DaDa/bDb/aa/bb
Step-2: Eliminate Unit Production:
 Unit Production is SC, new CFG without Unit Production is:
 SAACD/ACD/CD/AAC/AC/aC/a
 Aab/aAb
 CaC/a
 DaDa/bDb/aa/bb
Step-3:Replace all mixed string with solid NT:
 SAACD/ACD/CD/AAC/AC/PC/a
 APQ/PAQ
 CPC/a
 DPDP/QDQ/PP/QQ
 Pa

 Unit 3 – Context Free Grammar

 8

 Dixita Kagathara, CE Department | 2160704 – Theory of Computation

 Qb
Step-4 : Shorten the string of NT to length 2
 SAT1, T1AT2 ,T2CD
 SAU1,U1CD
 SAV1,V1AC
 SCD/AC/PC/a
 APQ
 APW1, W1AQ
 CPC/a
 DPP/QQ DPY1, Y1DP
 DQZ1, Z1DQ
 Pa
 Qb

11. Convert following CFG to CNF
SS(S)/˄

 Step-1: Eliminate ˄-Production:
 Nullable production is S^, new CFG without ˄-production is:
 SS(S)/(S)/S()/()
Step-2: Eliminate Unit Production:
 Here, there is no unit production,
 SS(S)/(S)/S()/()
Step-3:Replace all mixed string with solid NT:
 SSXSY/XSY/SXY/XY
 X(
 Y)
Step-4 : Shorten the string of NT to length 2
 SST1, T1XT2, T2SY
 SXV1 V1SY
 SSU1 U1XY
 SXY
 X(
 Y)

12. Unions, Concatenations and Kleen’s of Context free language.
 Theorem:- If L1 and L2 are context - free languages, then the languages L1 U L2, L1L2 , and L1

* are
also CFLs.
The proof is constructive: Starting with CFGs

 G1 = (V1, Ʃ, S1,P1) and G2 = (V2, Ʃ, S2,P2) ,
Generating L1 and L2, respectively, we show how to construct a new CFG for each of the three
cases.
A grammar Gu = (Vu, Ʃ, Su, Pu) generating L1 U L2. First we rename the element of V2 if necessary

 Unit 3 – Context Free Grammar

 9

 Dixita Kagathara, CE Department | 2160704 – Theory of Computation

so that V1 ∩ V2= Ø and we define
 Vu= V1 U V2 U {Su}
 Where Su is a new symbol not in V1 or V2. Then we let
 Pu= P1 U P2 U { Su S1 | S2 }

On the one hand, if x is in either L1 or L2, then Su =>*x in the grammar Gu , because we can
start a derivation with either Su S1 or Su S2 and continue with the derivation of x in G1

or G2 . Therefore,
 L1 U L2 ⊆ L(Gu)
On the other hand, if x is derivable from Su in Gu, the first step in any derivation must be
 Su=>S1 or Su=>S2
In the first case, all subsequent productions used must be productions in G1 , because no
variables in V2 are involved, and thus x∈ L1; in the second case, x ∈ L2. Therefore,
 L(Gu) ⊆ L1 U L2

A grammar Gc= (Vc, Ʃ, Sc, Pc) generating L1L2 . Again we relabel variables if necessary so that V1 ∩
V2 = Ø and define

 Vc = V1 U V2 U {Sc}
This time we let
 Pc= P1 U P2 U { ScS1S2 }
If x ∈L1L2 then x = x1x2 , where xi ∈Li for each i. we may then derive x in Gc as follows:
 Sc =>S1 S2 => *x1 S2 => * x1x2 = x
Where the second step is the derivation of x1 in G1 and the third step is the derivation of x2

in G2. Conversely, if x can be derived from Sc, then since the first step in the derivation must
be Sc=>S1 S2 , x must be derivable from S1 S2. Therefore, x=x1x2, where for each i, xi can be
derived from Si in Gc. Since V1 n V2 = Ø, being derivable from Si in Gc means being derivable
from Si in Gi, and so x ∈ L1L2.

A grammar G* = (V, Ʃ, S, P) generating L1 *.Let
 V = V1 U {S}
Where S V1.The language L1 *contains strings of the form x = x1x2 …xk , where each xi ∈ L1.
Since each xi can be derived from S1, then to derive x from S it is enough to be able to
derive a string of k S1‘S. We can accomplish this by including the productions

 SS1S |

In P. Therefore, let

 P = P1U { SS1S | }
The proof that L1 * ⊆ L(G*) is straightforward. If x ∈ L(G*) , on the other hand, then either

x = or x can be derived from some string of the form S1
k in G* . In the second case,

since the only production in G* beginning with S1 are those in G1, we may conclude that
 x∈ L(G1)k ⊆ L(G1)* .

	Darshan_6_2160704_TOC_2016_UNIT3.pdf

