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1. Define: Context Free Grammar & Context Free Language. 
 Context Free Grammar: 

A context free grammar is a 4-tuple G=(V,Ʃ,S,P) where, 
 V is finite set of non terminals, 
 Ʃ is disjoint finite set of terminals, 
 S is an element of V and it’s a start symbol, 
 P is a finite set formulas of the form Aα where A ∈ V and α∈ (V U Ʃ)*.  
Application of Context Free Grammar(CFG): 

1) CFG are extensively used to specify the syntax of programming language. 
2) CFG is used to develop a parser. 

Context Free Language: 
Language generated by CFG is called context free language. 
 Let G= (V, Ʃ, S, P) be a CFG. The Language generated by G is  
 L(G) : {x ∈Ʃ*/S⟹G* x} 
 A language L is a context free Language(CFL)  if, there is a CFG G so that L=L(G) 
 

2. Define: Regular Grammar. 
 A grammar G=(V,Ʃ,S,P) is regular if every production takes one of the two forms, 

 BaC 
 Ba 
Where B and C are Nonterminals and a is terminal. 
 

3. Give Recursive Definitions for following. 
 I. Recursive Definition of {a,b}* 

1. ˄∈L. 
2. For any S∈L, Sa∈L. 
3. For any S∈L, Sb∈L. 
4. No other strings are in L. 

II. Recursive Definition of Palindrome (pal) 
1. ˄, a, b ∈ pal 
2. For any S ∈ pal , aSa ∈ pal and bSb ∈ pal 
3. No other string are in pal 

III. The language {anbn / n≥0} 
1. ˄∈ L 
2. For every x ∈ L, axb ∈L 
3. No other strings are in L 

 

4. Write CFG for following. 
 1) Write CFG for ab* 

SaX 
X˄| bX 

2) Write CFG for a*b* 
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SXY 
XaX|˄ 
YbY|˄ 

3) Write CFG for (011+1)*(01)* 
SAB 
A011A | 1A | ^ 
B01B | ^ 

4) Write CFG which contains at least three times 1.  
SA1A1A1A 
A0A | 1A | ^ 

5) Write CFG that must start and end with same symbol. 
S0A0 | 1A1  

 A0A | 1A | ^ 
6) The language of even & odd length palindrome string over {a,b} 

SaSa|bSb|a|b|˄ 
7) No. of a and no. of b are same 

SaSb|bSa|˄ 
8) Write CFG for regular expression (a+b)*a(a+b)*a(a+b)* 
 SXaXaX 

XaX|bX|˄ 
9) Write CFG for L={aibjck | i=j or j=k}  

For i=j    for j=k 
S->AB    S->CD 
A->aAb | ab   C->aC | a 
B->cB | c   D->bDc | bc 

10) Write CFG for L={ aibjck | j>i+k}  
SABC 
AaAb |˄ 
BbB | b 
CbCc |˄ 

11) Write CFG for L={ 0i1j0k | j>i+k}  
SABC 
A0A1 |˄ 
B1B | 1 
C1C0 |˄ 

 

5. Define: Types of Derivation & Ambiguity. 
 There are mainly two types of derivations. 

1. Left most derivation 
2. Right most derivation 

Let Consider the CFG with the Production SS+S | S-S | S*S | S/S |(S)| a 
 
 



               Unit 3 – Context Free Grammar 
 

 3 

 

    Dixita Kagathara, CE Department  | 2160704 – Theory of Computation 

Left Most Derivation Right Most Derivation 

A derivation of a string W in a grammar G is 
a Left most derivation if at every step the 
left most nonterminal is replaced 

A derivation of a string W in a grammar G is 
a Right most derivation if at every step the 
right most nonterminal is replaced 

Consider string a*a-a 
SS-S 
S*S-S     
a*S-S 
a*a-S 
a*a-a 

Consider string: a-a/a  
 SS-S 

S-S/S 
S-S/a 
S-a/a 
a-a/a 

Equivalent left most derivation tree 

 

Equivalent Right most derivation tree 

 
Table 3.1 Difference between left most & right most derivation 

An Ambiguous CFG : 
A context free grammar G is ambiguous if there is at least one string in L(G) having two or more 
distinct derivation tree. (or, equivalently two or more distinct leftmost derivation or rightmost 
derivation) 

1) Prove that given grammar is ambiguous. SS+S | S-S | S*S | S/S | (S) |a 
 String : a+a+a 

  SS+S      SS+S 
  a+S      S+S+S 
  a+S+S      a+S+S 
  a+a+S      a+a+S 
  a+a+a      a+a+a 

 
Fig. 3.1 Two left most derivation tree for string a+a+a 
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 Here, we have two left most derivation for string a+a+a hence, above grammar is 
ambiguous.   

2) Prove that S->a | Sa | bSS | SSb | SbS is ambiguous 
String: baaab 

  SbSS      SSSb 
  baS      bSSSb 
  baSSb      baSSb 
  baaSb      baaSb 
  baaab      baaab 

 We have two left most derivation for string baaab hence, above grammar is ambiguous. 
 

6. Conversion from Finite Automata to Grammar. 
  

  
Fig. 3.2 Finite Automata 

Equivalent CFG     
 A0A 
 A1B 
 B1B 
 B0C 
 B0 
 C0A 
 C1B 
 

7. Backus-Naur Form (BNF) 
  BNF is one of the notation techniques for context free grammar. 

 It is often used to describe syntax of the language used in computing. 

 BNF is shorthand notation for CFG. 

 Following grammar uses the notation known as Backus Naur Form. Here, variables written 
between <..> are non terminals and vertical bar ‘|’ indicating a alternate choice. Apart from 
the familiar notation =, | and <..>, a new element here is […], which is used to enclosed an 
optional specification. 

Example: 
 <exp>=<exp> + <term> | <term> 
 <term>=<term> * <factor> | <factor> 

A B 
1 

C 
0 

0 
1 

 

1 

0 
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 <factor>=<factor> ^ <primary> | <primary> 
 <primary>=<id> | <const>  
 <id>=<letter> 
 <const>=[+/-]<digit> 
 <letter>=a | b | c |……| z 
 <digit>=0 | 1 |………….| 9 
 

8. Simplified forms & Normal forms. 
 Definition: Nullable Variable 

A Nullable variable in a CFG G=(V,Ʃ,S,P) is defined as follows: 
1) Any variable A for which P contains A˄ is nullable. 
2) if P contains production  

AB1B2…..Bn where B1B2…Bn are nullable variable, then A is nullable. 
3) No other variables in V are nullable. 

Eliminate ˄ production : 
1) SaX/Yb 

XS/˄ 
YbY/b 
Grammar after elimination of ^ production: 
SaX/Yb/a 

 XS 
 YbY/b 

2) SXaX/bX/Y 
XXaX/XbX/˄ 
Yab 
Grammar after elimination of ^ production: 
SXaX/bX/Y/aX/Xa/a/b 
XXaX/aX/Xa/a/XbX/Xb/bX/b 
Yab 

Definition: Unit Production 
Unit productions are always in the form of AB. Where A & B are single non terminals. 
Eliminate Unit Production: 

1) SABA/BA/AA/AB/A/B 
AaA/a 
BbB/b 
Grammar after elimination of unit production: 
Unit production are SA and SB 
SABA/BA/AA/AB/aA/a/bB/b 
SaA/a 
SbB/b 

2) SAa/B 
Aa/bc/B 
BA/bb 



               Unit 3 – Context Free Grammar 
 

 6 

 

    Dixita Kagathara, CE Department  | 2160704 – Theory of Computation 

Grammar after elimination of unit production: 
Unit production are SB,AB and BA. 
Aa/bc/B 
Aa/bc/A/bb 
Aa/bc/bb 
 
BA/bb 
Ba/bc/bb 
 
SAa/B 
SAa/a/bc/bb 
 
So CFG after removing unit production is: 
SAa/a/bc/bb 
Aa/bc/bb 
Ba/bc/bb 

Definition: Chomsky Normal Form 
A context free grammar is in Chomsky normal form (CNF) is every production is one of these two 
forms:   
 ABC 
 Aa 
Where A, B, C are nonterminals and a is terminal. 
Step to convert CFG into CNF:  

1) Eliminate ˄-Productions. 
2) Eliminate Unit Productions. 
3) Restricting the right side of productions to single terminal or string of two or more 

nonterminals. 
(Replace all mixed string with solid NTs) 

4) Final step of CNF. (shorten the string of NT to length 2) 
  

9. Convert following CFG to CNF: 
SaX/Yb 
XS/˄ 
YbY/b 

 Step-1: Eliminate ˄-Production: 
 Nullable production is X˄, new CFG without ˄-production is: 
 SaX/a/Yb 
 XS 
 YbY/b 
Step-2: Eliminate Unit Production: 
 Unit Production is XS, new CFG without Unit Production is: 
 SaX/a/Yb 
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 XaX/a/Yb 
 YbY/b 
Step-3: Replace all mixed string with solid NT: 
 SAX/YB/a 
 XAX/YB/a 
 YBY/b 
 Aa 
 Bb 
Step-4 : Shorten the string of NT to length 2 
 All NT strings on the RHS in the above CFG are already the required length. 
 So, CFG is in CNF. 
 

10. Convert following CFG to CNF 
SAACD 
AaAb/˄ 
CaC/a 
DaDa/bDb/˄ 

 Step-1: Eliminate ˄-Production: 
 Nullable production is A˄ and D˄, new CFG without ˄-production is: 
 apply for A˄ 
 SAACD/ACD/CD 
 Aab/aAb 
 CaC/a 
 DaDa/bDb/˄ 
 apply for D˄ 
 SAACD/ACD/CD/AAC/AC/C 
 Aab/aAb 
 CaC/a 
 DaDa/bDb/aa/bb 
Step-2: Eliminate Unit Production: 
 Unit Production is SC, new CFG without Unit Production is: 
 SAACD/ACD/CD/AAC/AC/aC/a 
 Aab/aAb 
 CaC/a 
 DaDa/bDb/aa/bb 
Step-3:Replace all mixed string with solid NT: 
 SAACD/ACD/CD/AAC/AC/PC/a 
 APQ/PAQ 
 CPC/a 
 DPDP/QDQ/PP/QQ 
 Pa 
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 Qb 
Step-4 : Shorten the string of NT to length 2 
 SAT1, T1AT2 ,T2CD 
 SAU1,U1CD 
 SAV1,V1AC 
 SCD/AC/PC/a 
 APQ 
 APW1, W1AQ 
 CPC/a 
 DPP/QQ    DPY1, Y1DP 
 DQZ1, Z1DQ 
 Pa 
 Qb 
 

11. Convert following CFG to CNF 
SS(S)/˄ 

 Step-1: Eliminate ˄-Production: 
 Nullable production is S^, new CFG without ˄-production is: 
 SS(S)/(S)/S()/() 
Step-2: Eliminate Unit Production: 
 Here, there is no unit production,  
 SS(S)/(S)/S()/() 
Step-3:Replace all mixed string with solid NT: 
 SSXSY/XSY/SXY/XY 
 X( 
 Y) 
Step-4 : Shorten the string of NT to length 2 
 SST1, T1XT2, T2SY 
 SXV1 V1SY 
 SSU1 U1XY 
 SXY 
 X( 
 Y) 
 

12. Unions, Concatenations and Kleen’s of Context free language. 
 Theorem:- If L1 and L2 are context - free languages, then the languages L1 U L2, L1L2 , and L1

* are 
also CFLs. 
The proof is constructive: Starting with CFGs 

  G1 = (V1, Ʃ, S1,P1) and G2 = (V2, Ʃ, S2,P2) , 
Generating L1 and L2, respectively, we show how to construct a new CFG for each of the three 
cases. 
A grammar Gu = (Vu, Ʃ, Su, Pu) generating L1 U L2. First we rename the element of V2 if necessary 
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so that V1 ∩ V2= Ø and we define  
  Vu= V1 U V2 U {Su} 
 Where Su is a new symbol not in V1 or V2. Then we let 
  Pu= P1 U P2 U { Su S1 | S2 } 

On the one hand, if x is in either L1 or L2, then Su =>*x in the grammar Gu , because we can 
start a derivation with either Su  S1 or Su  S2 and continue with the derivation of x in G1 

or G2 . Therefore, 
 L1 U L2 ⊆ L(Gu) 
On the other hand, if x is derivable from Su in Gu, the first step in any derivation must be  
 Su=>S1 or Su=>S2  
In the first case, all subsequent productions used must be productions in G1 , because no 
variables in V2 are involved, and thus x∈ L1; in the second case, x ∈ L2. Therefore, 
 L(Gu) ⊆ L1 U L2 

A grammar Gc= (Vc, Ʃ, Sc, Pc) generating L1L2 . Again we relabel variables if necessary so that V1 ∩ 
V2 = Ø and define  

 Vc = V1 U V2 U {Sc} 
This time we let  
 Pc= P1 U P2 U { ScS1S2 } 
If x ∈L1L2 then x = x1x2 , where xi ∈Li  for each i. we may then derive x in Gc as follows: 
 Sc =>S1 S2 => *x1 S2 => * x1x2 = x 
Where the second step is the derivation of x1 in G1 and the third step is the derivation of x2 

in G2. Conversely, if x can be derived from Sc, then since the first step in the derivation must 
be Sc=>S1 S2 , x must be derivable from S1 S2. Therefore, x=x1x2, where for each i, xi can be 
derived from Si in Gc. Since V1 n V2 = Ø, being derivable from Si in Gc means being derivable 
from Si in Gi, and so x ∈ L1L2. 

A grammar G* = (V, Ʃ, S, P) generating  L1 *.Let  
  V = V1 U {S} 
Where S   V1.The language L1 *contains strings of the form x = x1x2 …xk , where each xi ∈ L1.  
Since each xi can be derived from S1, then to derive x from S it is enough to be able to 
derive a string of k S1‘S. We can accomplish this by including the productions 

 SS1S |  

In P. Therefore, let 

 P = P1U { SS1S | } 
The proof that L1 * ⊆ L(G*) is straightforward. If x ∈ L(G*) , on the other hand, then either 

x =   or x can be derived from some string of the form S1
k  in G* . In the second case, 

since the only production in G* beginning with S1 are those in G1, we may conclude that  
 x∈ L(G1)k ⊆ L(G1)* . 
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