
 Strengths and Weaknesses

 IDLE

Every Python installation comes with an Integrated Development and Learning Environment,
which you’ll see shortened to IDLE or even IDE. These are a class of applications that help you
write code more efficiently. While there are many IDEs for you to choose from, Python IDLE is
very bare-bones, which makes it the perfect tool for a beginning programmer.

 Python IDLE comes included in Python installations on Windows and Mac. If you’re a Linux
user, then you should be able to find and download Python IDLE using your package manager.
Once you’ve installed it, you can then use Python IDLE as an interactive interpreter or as a file
editor

 Dynamic Typing

In Dynamic Typing, type checking is performed at runtime. For example, Python is a dynamically typed language. It

means that the type of a variable is allowed to change over its lifetime. Other dynamically typed languages are -Perl,

Ruby, PHP, Javascriptetc. Let’s take a Python code example to see if a variable can change type

variable a is assigned to a string
a ="hello"
print(type(a))

variable a is assigned to an integer
a = 5
print(type(a))

This confirms that the type of variable “a” is allowed to change and Python correctly infers the type as
it changes.

Let’s take another example of Dynamic Typing in Python

simple function
def add(a, b):
 return a + b

calling the function with string
print(add('hello', 'world'))

calling the function with integer
print(add(2, 4))

In Python, we don’t really have a good idea of what are the types that this function deals with and also what the type

of the return value is going to be

a = 12.0
print(type(a))
b = 24
print(type(b))
c = 'data'
print(type(c))
print (a * 3)
print (b * 3)
print (c * 3)

Output:

<class 'float'>
<class 'int'>
<class 'str'>
36.0
72

datadatadata

 Relationship Between Objects, Variables and References
a = 12.0
print (type(a))
a = 24
print(type(a))
a = 'data'
print (type(a))
a = 2+3j
print (type(a))

Output:

<class 'float'>
<class 'int'>
<class 'str'>
<class 'complex'>

Python Naming Conventions

1. General

 Avoid using names that are too general or too wordy. Strike a good balance between the two.

 Bad: data_structure, my_list, info_map,

dictionary_for_the_purpose_of_storing_data_representing_word_definitions

 Good: user_profile, menu_options, word_definitions

 Don’t be a jackass and name things “O”, “l”, or “I”

 When using CamelCase names, capitalize all letters of an abbreviation (e.g. HTTPServer)

2. Packages

 Package names should be all lower case

 When multiple words are needed, an underscore should separate them

 It is usually preferable to stick to 1 word names

3. Modules

 Module names should be all lower case

 When multiple words are needed, an underscore should separate them

 It is usually preferable to stick to 1 word names

4. Classes

 Class names should follow the UpperCaseCamelCase convention

 Python’s built-in classes, however are typically lowercase words

 Exception classes should end in “Error”

5. Global (module-level) Variables

 Global variables should be all lowercase

 Words in a global variable name should be separated by an underscore

6. Instance Variables

 Instance variable names should be all lower case

 Words in an instance variable name should be separated by an underscore

 Non-public instance variables should begin with a single underscore

 If an instance name needs to be mangled, two underscores may begin its name

7. Methods

 Method names should be all lower case

 Words in an method name should be separated by an underscore

 Non-public method should begin with a single underscore

 If a method name needs to be mangled, two underscores may begin its name

8. Method Arguments

 Instance methods should have their first argument named ‘self’.

 Class methods should have their first argument named ‘cls’

9. Functions

 Function names should be all lower case

 Words in a function name should be separated by an underscore

10. Constants

 Constant names must be fully capitalized

 Words in a constant name should be separated by an underscore

Case Type Description Example

Snake Case All words lower case separated by underscores my_function, user_input

Pascal Case
The first letter of each word is capitalized except
the first word

MyClass, AnotherClass

Camel Case
First letter of each word is capitalized except the
first word

myVariable, isInstance

Upper Case with
Underscores

All letters are upper case and words are
separated by underscores

MAX_OVERFLOW, TOTAL

Python Global Variable Naming Conventions

In Python, a variable declared outside of a function or a block of code is referred to as a global
variable. These global variables can be accessed by any function in the program.

When it comes to naming global variables in Python, the PEP8 style guide provides clear
guidelines.

As a convention, global variables should be named following the snake_case style. This means
that if your variable name consists of multiple words, they should be in lowercase and
separated by underscores.

Here’s an example:

Correct way
global_variable = "I'm a global variable"

That said, it’s important to note that using global variables should generally be avoided as they
can lead to confusing code and may be prone to errors.

In cases where you need constants (i.e., variables whose values won’t change), Python’s
convention is to use uppercase letters and separate words with underscores. These are
technically global variables as well, but they have different use cases.

Here’s an example:

Correct way
MAX_SIZE = 100
PI_VALUE = 3.14159
As we see above, constants such as MAX_SIZE and PI_VALUE are in uppercase, emphasizing that they
should not be changed.

Python Class Naming Conventions

In Python, the naming convention for classes is PascalCase, which means that the first letter of
each word is capitalized and there are no underscores between words.

Here’s an example:

Correct way
class MyNewClass:
 pass

Incorrect way
class my_new_class:
 pass

Python Class Method Naming Convention

Methods in Python classes should be named using snake_case. This means that all words
should be in lowercase and separated by underscores.

Here’s an example:

class MyClass:
 def my_method(self):
 pass

Python Class Attribute Naming Convention

Similar to methods, class attributes (variables defined in the class) should also be named using
snake_case in Python.

Here’s an example:

class MyClass:
 my_attribute = 10

Python Class File Naming Convention

When naming Python files that contain classes, you should follow the snake_case convention as
well. This helps make it clear and readable, especially when importing modules.

Here’s an example: my_python_file.py

Python Class Instance Naming Convention

When creating instances of a class (also known as objects) in Python, it’s recommended to use
snake_case as well. This keeps it consistent with the rest of your variables.

Here’s an example:

class MyClass:
 pass

my_class_instance = MyClass()

Python Object Naming Conventions

Objects in Python are instances of a class that you’ve defined. The naming convention for
Python objects follows the same rules as that for regular variables.

When you create an object, the name should be in snake_case, which means all words are in
lowercase, and words are separated by underscores. The name should be descriptive, making it
clear what the object represents. Avoid using Python keywords and function names as object
names.

Let’s consider a class named Car:
class Car:
 def __init__(self, color, make, model):
 self.color = color
 self.make = make

 self.model = model

When creating an object (or instance) of the Car class, the name should adhere to the
snake_case convention. Here’s an example:

Correct way
my_car = Car('red', 'Toyota', 'Corolla')

Incorrect way
MyCar = Car('red', 'Toyota', 'Corolla')
myCar = Car('red', 'Toyota', 'Corolla')

The example above, my_car clearly communicates that this is an instance of a car and follows the
snake_case naming convention.

Python Variable Naming Conventions

In Python, variable names follow the snake_case naming convention as per the PEP8 style
guide. This means that all words in the name are in lowercase, and each word is separated by
an underscore.

Here’s an example:

Correct way
my_variable = 10

Incorrect way
myVariable = 10
MyVariable = 10
Here are a few more guidelines when naming variables in Python:

 Variable names should be descriptive and meaningful to make the code more readable and
understandable.

For instance, if you have a variable holding the number of users, num_users would be a clear and
understandable choice.
num_users = 500

 Avoid using single-character variable names, except for common ones like i or j in loops.
for i in range(10):
 print(i)

 Do not start variable names with a number or special character.
Incorrect
123abc = "Hello"
@name = "Hello"

Correct

abc123 = "Hello"
name = "Hello"

 Avoid using Python keywords and function names as variable names. For instance, don’t name
your variable list, dict, str, print, etc.

Incorrect
list = [1, 2, 3]

Correct
my_list = [1, 2, 3]

Python Function Naming Convention

In Python, function names follow the snake_case naming convention as per the PEP8 style
guide. This means all words should be in lowercase, and each word is separated by an
underscore.

Here’s an example:

Correct way
def my_function():
 pass

Incorrect way
def MyFunction():
 pass

def myFunction():
 pass
Here are a few more guidelines when naming functions in Python:

 Descriptive Names: Function names should be descriptive and indicate the function’s
purpose. This improves readability and understanding of the code.

Correct way
def calculate_average():
 pass

Incorrect way
def func1():
 pass

In the example above, calculate_average gives a clear indication of what the function is
supposed to do, while func1 doesn’t provide any meaningful context.

 Avoid Using Python Keywords and Function Names: Avoid naming your function the
same as Python keywords or existing function names. This can lead to unwanted
behavior and confusion.

Incorrect
def print():
 pass

Correct
def print_custom_message():
 pass

 Use Action Words: Since functions usually perform an action, it’s a good practice to
start the function name with a verb. This immediately gives an idea of what action the
function performs.

Correct
def get_total():
 pass

Correct
def print_report():
 pass

Python Strings

In computer programming, a string is a sequence of characters. For example, "hello" is a string

containing a sequence of characters 'h', 'e', 'l', 'l', and 'o'.

We use single quotes or double quotes to represent a string in Python. For example,

create a string using double quotes
string1 = "Python programming"

create a string using single quotes
string1 = 'Python programming'

Here, we have created a string variable named string1. The variable is initialized with the string Python

Programming.

Example: Python String
create string type variables

name = "Python"
print(name)

message = "I love Python."
print(message)
Run Code

Output

Python
I love Python.

In the above example, we have created string-type variables: name and message with

values "Python" and "I love Python" respectively.

Here, we have used double quotes to represent strings but we can use single quotes too.

Access String Characters in Python

We can access the characters in a string in three ways.

 Indexing: One way is to treat strings as a list and use index values. For example,
greet = 'hello'

access 1st index element
print(greet[1]) # "e"
Run Code

 Negative Indexing: Similar to a list, Python allows negative indexing for its strings. For example,
greet = 'hello'

access 4th last element
print(greet[-4]) # "e"
Run Code

 Slicing: Access a range of characters in a string by using the slicing operator colon :. For example,
greet = 'Hello'

access character from 1st index to 3rd index
print(greet[1:4]) # "ell"
Run Code

Note: If we try to access an index out of the range or use numbers other than an integer, we will get

errors.

Python Strings are immutable

In Python, strings are immutable. That means the characters of a string cannot be changed. For example,

message = 'Hola Amigos'
message[0] = 'H'
print(message)
Run Code

Output

TypeError: 'str' object does not support item assignment

However, we can assign the variable name to a new string. For example,

message = 'Hola Amigos'

assign new string to message variable
message = 'Hello Friends'

prints(message); # prints "Hello Friends"
Run Code

Python Multiline String

We can also create a multiline string in Python. For this, we use triple double quotes """ or triple single

quotes '''. For example,
multiline string
message = """
Never gonna give you up
Never gonna let you down
"""

print(message)
Run Code

Output

Never gonna give you up

Never gonna let you down

In the above example, anything inside the enclosing triple-quotes is one multiline string.

Python String Operations

There are many operations that can be performed with strings which makes it one of the most used data

types in Python.

1. Compare Two Strings

We use the == operator to compare two strings. If two strings are equal, the operator returns True.

Otherwise, it returns False. For example,
str1 = "Hello, world!"
str2 = "I love Python."
str3 = "Hello, world!"

compare str1 and str2
print(str1 == str2)

compare str1 and str3
print(str1 == str3)
Run Code

Output

False
True

In the above example,

 str1 and str2 are not equal. Hence, the result is False.

 str1 and str3 are equal. Hence, the result is True.

2. Join Two or More Strings

In Python, we can join (concatenate) two or more strings using the + operator.
greet = "Hello, "
name = "Jack"

using + operator
result = greet + name
print(result)

Output: Hello, Jack
Run Code

In the above example, we have used the + operator to join two strings: greet and name.

Iterate Through a Python String

We can iterate through a string using a for loop. For example,
greet = 'Hello'

iterating through greet string
for letter in greet:
 print(letter)
Run Code

Output

H
e
l
l
o

Python String Length

In Python, we use the len() method to find the length of a string. For example,
greet = 'Hello'

count length of greet string
print(len(greet))

Output: 5
Run Code

String Membership Test

We can test if a substring exists within a string or not, using the keyword in.
print('a' in 'program') # True
print('at' not in 'battle') False
Run Code

Methods of Python String

Besides those mentioned above, there are various string methods present in Python. Here are some of

those methods:

Methods Description

upper() converts the string to uppercase

lower() converts the string to lowercase

partition() returns a tuple

replace() replaces substring inside

find() returns the index of first occurrence of substring

rstrip() removes trailing characters

split() splits string from left

startswith() checks if string starts with the specified string

isnumeric() checks numeric characters

index() returns index of substring

Escape Sequences in Python

The escape sequence is used to escape some of the characters present inside a string.

Suppose we need to include both double quote and single quote inside a string,

example = "He said, "What's there?""

print(example) # throws error
Run Code

Since strings are represented by single or double quotes, the compiler will treat "He said, " as the string.

Hence, the above code will cause an error.

To solve this issue, we use the escape character \ in Python.
escape double quotes
example = "He said, \"What's there?\""

escape single quotes
example = 'He said, "What\'s there?"'

print(example)

Output: He said, "What's there?"
Run Code

Here is a list of all the escape sequences supported by Python.

Escape Sequence Description

\\ Backslash

\' Single quote

\" Double quote

\a ASCII Bell

\b ASCII Backspace

\f ASCII Formfeed

\n ASCII Linefeed

\r ASCII Carriage Return

\t ASCII Horizontal Tab

\v ASCII Vertical Tab

\ooo Character with octal value ooo

\xHH Character with hexadecimal value HH

Python String Formatting (f-Strings)

Python f-Strings make it really easy to print values and variables. For example,
name = 'Cathy'
country = 'UK'

print(f'{name} is from {country}')
Run Code

Output

Cathy is from UK

Here, f'{name} is from {country}' is an f-string.

This new formatting syntax is powerful and easy to use. From now on, we will use f-Strings to print strings

and variables.

How String slicing in Python works
For understanding slicing we will use different methods, here we will cover 2 methods of string slicing, one
using the in-build slice() method and another using the [:] array slice. String slicing in Python is about
obtaining a sub-string from the given string by slicing it respectively from start to end.

Python slicing can be done in two ways:

 Using a slice() method
 Using the array slicing [::] method

Index tracker for positive and negative index: String indexing and slicing in python. Here, the Negative
comes into consideration when tracking the string in reverse.

Method 1: Using the slice() method

The slice() constructor creates a slice object representing the set of indices specified by range(start, stop,
step).
Syntax:
 slice(stop)
 slice(start, stop, step)
Parameters: start: Starting index where the slicing of object starts. stop: Ending index where the slicing of
object stops. step: It is an optional argument that determines the increment between each index for
slicing. Return Type: Returns a sliced object containing elements in the given range only.
Example:

 Python3

Python program to demonstrate

string slicing

String slicing

String = 'ASTRING'

Using slice constructor

s1 = slice(3)

s2 = slice(1, 5, 2)

s3 = slice(-1, -12, -2)

print("String slicing")

print(String[s1])

print(String[s2])

print(String[s3])

Output:

String slicing

AST

SR

GITA

Method 2: Using the List/array slicing [::] method

In Python, indexing syntax can be used as a substitute for the slice object. This is an easy and convenient
way to slice a string using list slicing and Array slicing both syntax-wise and execution-wise. A start, end,
and step have the same mechanism as the slice() constructor.
Below we will see string slicing in Python with examples.
Syntax

arr[start:stop] # items start through stop-1

arr[start:] # items start through the rest of the array

arr[:stop] # items from the beginning through stop-1

arr[:] # a copy of the whole array

arr[start:stop:step] # start through not past stop, by step
Example 1:

In this example, we will see slicing in python list the index start from 0 indexes and ending with a 2
index(stops at 3-1=2).

 Python3

Python program to demonstrate

string slicing

String slicing

String = 'hellohowareyou'

Using indexing sequence

print(String[:3])

Output:

Hel

 b = "Hello, World!"
print(b[2:5])

output:

llo

 b = "Hello, World!"
print(b[:5])

output:

Hello

 >>> s = 'mybacon'

 >>> s[0:7:2]

 'mbcn'

 >>> s[1:7:2]

 'yao'

 >>> s = '12345' * 5

 >>> s

 '1234512345123451234512345'

 >>> s[::5]

 '11111'

 >>> s[4::5]

 '55555'

Storing Operators

he operator module exports a set of efficient functions corresponding to the intrinsic
operators of Python. For example, operator.add(x, y) is equivalent to the expression x+y. The
function names are those used for special class methods; variants without leading and
trailing __ are also provided for convenience.

import operator
operations = [operator.add, operator.sub]
add two numbers
s = operations[0](1, 2)

Types of Python Operators

Here's a list of different types of Python operators that we will learn in this tutorial.

1. Arithmetic operators

2. Assignment Operators

3. Comparison Operators

4. Logical Operators

5. Bitwise Operators

6. Special Operators

1. Python Arithmetic Operators

Arithmetic operators are used to perform mathematical operations like addition, subtraction, multiplication,

etc. For example,

sub = 10 - 5 # 5

Here, - is an arithmetic operator that subtracts two values or variables.

Operator Operation Example

+ Addition 5 + 2 = 7

- Subtraction 4 - 2 = 2

* Multiplication 2 * 3 = 6

/ Division 4 / 2 = 2

// Floor Division 10 // 3 = 3

% Modulo 5 % 2 = 1

** Power 4 ** 2 = 16

Example 1: Arithmetic Operators in Python

a = 7
b = 2

addition
print ('Sum: ', a + b)

subtraction
print ('Subtraction: ', a - b)

multiplication
print ('Multiplication: ', a * b)

division
print ('Division: ', a / b)

floor division
print ('Floor Division: ', a // b)

modulo
print ('Modulo: ', a % b)

a to the power b
print ('Power: ', a ** b)

Run Code

Output

Sum: 9
Subtraction: 5
Multiplication: 14
Division: 3.5

Floor Division: 3
Modulo: 1
Power: 49

In the above example, we have used multiple arithmetic operators,

 + to add a and b

 - to subtract b from a

 * to multiply a and b

 / to divide a by b

 // to floor divide a by b

 % to get the remainder

 ** to get a to the power b

2. Python Assignment Operators

Assignment operators are used to assign values to variables. For example,

assign 5 to x
var x = 5

Here, = is an assignment operator that assigns 5 to x.

Here's a list of different assignment operators available in Python.

Operator Name Example

= Assignment Operator a = 7

+= Addition Assignment a += 1 # a = a + 1

-= Subtraction Assignment a -= 3 # a = a - 3

*= Multiplication Assignment a *= 4 # a = a * 4

/= Division Assignment a /= 3 # a = a / 3

%= Remainder Assignment a %= 10 # a = a % 10

**= Exponent Assignment a **= 10 # a = a ** 10

Example 2: Assignment Operators

assign 10 to a
a = 10

assign 5 to b
b = 5

assign the sum of a and b to a
a += b # a = a + b

print(a)

Output: 15

Run Code

Here, we have used the += operator to assign the sum of a and b to a.

Similarly, we can use any other assignment operators according to the need.

3. Python Comparison Operators

Comparison operators compare two values/variables and return a boolean result: True or False. For

example,
a = 5
b =2

print (a > b) # True

Run Code

Here, the > comparison operator is used to compare whether a is greater than b or not.

Operator Meaning Example

== Is Equal To 3 == 5 gives us False

!= Not Equal To 3 != 5 gives us True

> Greater Than 3 > 5 gives us False

< Less Than 3 < 5 gives us True

>= Greater Than or Equal To 3 >= 5 give us False

<= Less Than or Equal To 3 <= 5 gives us True

Example 3: Comparison Operators

a = 5

b = 2

equal to operator
print('a == b =', a == b)

not equal to operator
print('a != b =', a != b)

greater than operator
print('a > b =', a > b)

less than operator
print('a < b =', a < b)

greater than or equal to operator
print('a >= b =', a >= b)

less than or equal to operator
print('a <= b =', a <= b)

Run Code

Output

a == b = False
a != b = True
a > b = True
a < b = False
a >= b = True
a <= b = False

Note: Comparison operators are used in decision-making and loops. We'll discuss more of the

comparison operator and decision-making in later tutorials.

4. Python Logical Operators

Logical operators are used to check whether an expression is True or False. They are used in decision-

making. For example,
a = 5
b = 6

print((a > 2) and (b >= 6)) # True

Run Code

Here, and is the logical operator AND. Since both a > 2 and b >= 6 are True, the result is True.

Operator Example Meaning

and a and b
Logical AND:
True only if both the operands are True

or a or b
Logical OR:
True if at least one of the operands is True

not not a
Logical NOT:
True if the operand is False and vice-versa.

Example 4: Logical Operators

logical AND
print(True and True) # True
print(True and False) # False

logical OR
print(True or False) # True

logical NOT
print(not True) # False

Run Code

Note: Here is the truth table for these logical operators.

5. Python Bitwise operators

Bitwise operators act on operands as if they were strings of binary digits. They operate bit by bit, hence

the name.

For example, 2 is 10 in binary and 7 is 111.

In the table below: Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary)

Operator Meaning Example

& Bitwise AND x & y = 0 (0000 0000)

| Bitwise OR x | y = 14 (0000 1110)

~ Bitwise NOT ~x = -11 (1111 0101)

^ Bitwise XOR x ^ y = 14 (0000 1110)

>> Bitwise right shift x >> 2 = 2 (0000 0010)

<< Bitwise left shift x << 2 = 40 (0010 1000)

6. Python Special operators

Python language offers some special types of operators like the identity operator and

the membership operator. They are described below with examples.

Identity operators

In Python, is and is not are used to check if two values are located on the same part of the memory. Two

variables that are equal does not imply that they are identical.

Operator Meaning Example

is True if the operands are identical (refer to the same
object)

x is True

is not True if the operands are not identical (do not refer to
the same object)

x is not

True

Example 4: Identity operators in Python

x1 = 5
y1 = 5
x2 = 'Hello'
y2 = 'Hello'
x3 = [1,2,3]
y3 = [1,2,3]

print(x1 is not y1) # prints False

print(x2 is y2) # prints True

print(x3 is y3) # prints False

Run Code

Here, we see that x1 and y1 are integers of the same values, so they are equal as well as identical. Same

is the case with x2 and y2 (strings).

But x3 and y3 are lists. They are equal but not identical. It is because the interpreter locates them

separately in memory although they are equal.

Membership operators

In Python, in and not in are the membership operators. They are used to test whether a value or variable

is found in a sequence (string, list, tuple, set and dictionary).

In a dictionary we can only test for presence of key, not the value.

Operator Meaning Example

in True if value/variable is found in the sequence 5 in x

not in True if value/variable is not found in the sequence 5 not in x

Example 5: Membership operators in Python

x = 'Hello world'
y = {1:'a', 2:'b'}

check if 'H' is present in x string
print('H' in x) # prints True

check if 'hello' is present in x string
print('hello' not in x) # prints True

check if '1' key is present in y
print(1 in y) # prints True

check if 'a' key is present in y
print('a' in y) # prints False

Run Code

Output

True
True
True
False

Here, 'H' is in x but 'hello' is not present in x (remember, Python is case sensitive).

Similarly, 1 is key and 'a' is the value in dictionary y. Hence, 'a' in y returns False.

Python Data Types

In this tutorial, you will learn about different data types we can use in Python

with the help of examples.

In computer programming, data types specify the type of data that can be

stored inside a variable. For example,

num = 24

Here, 24 (an integer) is assigned to the num variable. So the data type of num is

of the int class.

Python Data Types

Data Types Classes Description

Numeric int, float, complex holds numeric values

String str holds sequence of characters

Sequence list, tuple, range holds collection of items

Mapping dict holds data in key-value pair form

Boolean bool holds either True or False

Set set, frozeenset hold collection of unique items

Since everything is an object in Python programming, data types are actually

classes and variables are instances(object) of these classes.

Python Numeric Data type

In Python, numeric data type is used to hold numeric values.

Integers, floating-point numbers and complex numbers fall under Python

numbers category. They are defined as int, float and complex classes in

Python.

 int - holds signed integers of non-limited length.

 float - holds floating decimal points and it's accurate up to 15 decimal places.

 complex - holds complex numbers.

We can use the type() function to know which class a variable or a value

belongs to.

Let's see an example,

num1 = 5
print(num1, 'is of type', type(num1))

num2 = 2.0
print(num2, 'is of type', type(num2))

num3 = 1+2j
print(num3, 'is of type', type(num3))
Run Code

Output

5 is of type <class 'int'>

2.0 is of type <class 'float'>
(1+2j) is of type <class 'complex'>

In the above example, we have created three variables

named num1, num2 and num3 with values 5, 5.0, and 1+2j respectively.

We have also used the type() function to know which class a certain variable

belongs to.

Since,

 5 is an integer value, type() returns int as the class of num1 i.e <class 'int'>

 2.0 is a floating value, type() returns float as the class of num2 i.e <class

'float'>

 1 + 2j is a complex number, type() returns complex as the class

of num3 i.e <class 'complex'>

Python List Data Type

List is an ordered collection of similar or different types of items separated by

commas and enclosed within brackets []. For example,

languages = ["Swift", "Java", "Python"]

Here, we have created a list named languages with 3 string values inside it.

Access List Items

To access items from a list, we use the index number (0, 1, 2 ...). For

example,
languages = ["Swift", "Java", "Python"]

access element at index 0
print(languages[0]) # Swift

access element at index 2
print(languages[2]) # Python
Run Code

In the above example, we have used the index values to access items from

the languages list.

 languages[0] - access first item from languages i.e. Swift

 languages[2] - access third item from languages i.e. Python

Python Tuple Data Type

Tuple is an ordered sequence of items same as a list. The only difference is

that tuples are immutable. Tuples once created cannot be modified.

In Python, we use the parentheses () to store items of a tuple. For example,

product = ('Xbox', 499.99)

Here, product is a tuple with a string value Xbox and integer value 499.99.

Access Tuple Items

Similar to lists, we use the index number to access tuple items in Python . For

example,

create a tuple
product = ('Microsoft', 'Xbox', 499.99)

access element at index 0
print(product[0]) # Microsoft

access element at index 1
print(product[1]) # Xbox
Run Code

Python String Data Type

String is a sequence of characters represented by either single or double

quotes. For example,

name = 'Python'
print(name)

message = 'Python for beginners'
print(message)
Run Code

Output

Python
Python for beginners

In the above example, we have created string-type

variables: name and message with values 'Python' and 'Python for

beginners' respectively.

Python Set Data Type

Set is an unordered collection of unique items. Set is defined by values

separated by commas inside braces { }. For example,
create a set named student_id
student_id = {112, 114, 116, 118, 115}

display student_id elements
print(student_id)

display type of student_id

print(type(student_id))
Run Code

Output

{112, 114, 115, 116, 118}
<class 'set'>

Here, we have created a set named student_info with 5 integer values.

Since sets are unordered collections, indexing has no meaning. Hence, the

slicing operator [] does not work.

Python Dictionary Data Type

Python dictionary is an ordered collection of items. It stores elements in

key/value pairs.

Here, keys are unique identifiers that are associated with each value.

Let's see an example,

create a dictionary named capital_city
capital_city = {'Nepal': 'Kathmandu', 'Italy': 'Rome', 'England': 'London'}

print(capital_city)
Run Code

Output

{'Nepal': 'Kathmandu', 'Italy': 'Rome', 'England': 'London'}

In the above example, we have created a dictionary named capital_city.

Here,

1. Keys are 'Nepal', 'Italy', 'England'

2. Values are 'Kathmandu', 'Rome', 'London'

Access Dictionary Values Using Keys

We use keys to retrieve the respective value. But not the other way around.

For example,
create a dictionary named capital_city
capital_city = {'Nepal': 'Kathmandu', 'Italy': 'Rome', 'England': 'London'}

print(capital_city['Nepal']) # prints Kathmandu

print(capital_city['Kathmandu']) # throws error message
Run Code

Here, we have accessed values using keys from the capital_city dictionary.

Since 'Nepal' is key, capital_city['Nepal'] accesses its respective value

i.e. Kathmandu

However, 'Kathmandu' is the value for the 'Nepal' key,

so capital_city['Kathmandu'] throws an error message.

Python Type Conversion

In programming, type conversion is the process of converting data of one type to another. For example:

converting int data to str.

There are two types of type conversion in Python.

 Implicit Conversion - automatic type conversion

 Explicit Conversion - manual type conversion

Python Implicit Type Conversion

In certain situations, Python automatically converts one data type to another. This is known as implicit

type conversion.

Example 1: Converting integer to float

Let's see an example where Python promotes the conversion of the lower data type (integer) to the higher

data type (float) to avoid data loss.

integer_number = 123
float_number = 1.23

new_number = integer_number + float_number

display new value and resulting data type
print("Value:",new_number)
print("Data Type:",type(new_number))
Run Code

Output

Value: 124.23
Data Type: <class 'float'>

In the above example, we have created two

variables: integer_number and float_number of int and float type respectively.

Then we added these two variables and stored the result in new_number.

As we can see new_number has value 124.23 and is of the float data type.

It is because Python always converts smaller data types to larger data types to avoid the loss of data.

Note:

 We get TypeError, if we try to add str and int. For example, '12' + 23. Python is not able to use Implicit

Conversion in such conditions.

 Python has a solution for these types of situations which is known as Explicit Conversion.

Explicit Type Conversion

In Explicit Type Conversion, users convert the data type of an object to required data type.

We use the built-in functions like int(), float(), str(), etc to perform explicit type conversion.

This type of conversion is also called typecasting because the user casts (changes) the data type of the

objects.

Example 2: Addition of string and integer Using Explicit Conversion
num_string = '12'
num_integer = 23

print("Data type of num_string before Type Casting:",type(num_string))

explicit type conversion
num_string = int(num_string)

print("Data type of num_string after Type Casting:",type(num_string))

num_sum = num_integer + num_string

print("Sum:",num_sum)
print("Data type of num_sum:",type(num_sum))
Run Code

Output

Data type of num_string before Type Casting: <class 'str'>
Data type of num_string after Type Casting: <class 'int'>
Sum: 35
Data type of num_sum: <class 'int'>

In the above example, we have created two variables: num_string and num_integer with str and int type

values respectively. Notice the code,

num_string = int(num_string)

Here, we have used int() to perform explicit type conversion of num_string to integer type.

After converting num_string to an integer value, Python is able to add these two variables.

Finally, we got the num_sum value i.e 35 and data type to be int.

Key Points to Remember

1. Type Conversion is the conversion of an object from one data type to another data type.

2. Implicit Type Conversion is automatically performed by the Python interpreter.

3. Python avoids the loss of data in Implicit Type Conversion.

4. Explicit Type Conversion is also called Type Casting, the data types of objects are converted using

predefined functions by the user.

5. In Type Casting, loss of data may occur as we enforce the object to a specific data type.

Python abs()
returns absolute value of a number

Python all()
returns true when all elements in iterable is true

Python any()
Checks if any Element of an Iterable is True

Python ascii()
Returns String Containing Printable Representation

Python bin()
converts integer to binary string

Python bool()
Converts a Value to Boolean

Python bytearray()
returns array of given byte size

Python bytes()
returns immutable bytes object

Python callable()
Checks if the Object is Callable

Python chr()
Returns a Character (a string) from an Integer

Python classmethod()
returns class method for given function

Python compile()
Returns a Python code object

Python complex()
Creates a Complex Number

Python delattr()
Deletes Attribute From the Object

Python dict()
Creates a Dictionary

Python dir()
Tries to Return Attributes of Object

Python divmod()
Returns a Tuple of Quotient and Remainder

Python enumerate()
Returns an Enumerate Object

Python eval()
Runs Python Code Within Program

Python exec()
Executes Dynamically Created Program

Python filter()
constructs iterator from elements which are true

Python float()
returns floating point number from number, string

Python format()
returns formatted representation of a value

Python frozenset()
returns immutable frozenset object

Python getattr()
returns value of named attribute of an object

Python globals()
returns dictionary of current global symbol table

Python hasattr()
returns whether object has named attribute

Python hash()
returns hash value of an object

Python help()
Invokes the built-in Help System

Python hex()
Converts to Integer to Hexadecimal

Python id()
Returns Identify of an Object

Python input()
reads and returns a line of string

Python int()
returns integer from a number or string

Python isinstance()
Checks if a Object is an Instance of Class

Python issubclass()
Checks if a Class is Subclass of another Class

Python iter()
returns an iterator

Python len()
Returns Length of an Object

Python list()
creates a list in Python

Python locals()
Returns dictionary of a current local symbol table

Python map()
Applies Function and Returns a List

Python max()
returns the largest item

Python memoryview()
returns memory view of an argument

Python min()
returns the smallest value

Python next()
Retrieves next item from the iterator

Python object()
creates a featureless object

Python oct()
returns the octal representation of an integer

Python open()
Returns a file object

Python ord()
returns an integer of the Unicode character

Python pow()
returns the power of a number

Python print()
Prints the Given Object

Python property()
returns the property attribute

Python range()
returns a sequence of integers

Python repr()
returns a printable representation of the object

Python reversed()
returns the reversed iterator of a sequence

Python round()
rounds a number to specified decimals

Python set()
constructs and returns a set

Python setattr()
sets the value of an attribute of an object

Python slice()
returns a slice object

Python sorted()
returns a sorted list from the given iterable

Python staticmethod()
transforms a method into a static method

Python str()
returns the string version of the object

Python sum()
Adds items of an Iterable

Python super()
Returns a proxy object of the base class

Python tuple()
Returns a tuple

Python type()
Returns the type of the object

Python vars()
Returns the __dict__ attribute

Python zip()
Returns an iterator of tuples

Python __import__()
Function called by the import statement

