
Python Classes

A class is considered as a blueprint of objects. We can think of the class as a

sketch (prototype) of a house. It contains all the details about the floors,

doors, windows, etc. Based on these descriptions we build the house. House

is the object.

Since many houses can be made from the same description, we can create

many objects from a class.

Define Python Class

We use the class keyword to create a class in Python. For example,

class ClassName:

 # class definition

Here, we have created a class named ClassName.

Let's see an example,

class Bike:

 name = ""

 gear = 0

Here,

 Bike - the name of the class

 name/gear - variables inside the class with default values "" and 0 respectively.

Note: The variables inside a class are called attributes.

Python Objects

An object is called an instance of a class. For example, suppose Bike is a

class then we can create objects like bike1, bike2, etc from the class.

Here's the syntax to create an object.

objectName = ClassName()

Let's see an example,

create class

class Bike:

 name = ""

 gear = 0

create objects of class

bike1 = Bike()

Here, bike1 is the object of the class. Now, we can use this object to access

the class attributes.

Access Class Attributes Using Objects

We use the . notation to access the attributes of a class. For example,

modify the name attribute

bike1.name = "Mountain Bike"

access the gear attribute

bike1.gear

Here, we have used bike1.name and bike1.gear to change and access the value

of name and gear attribute respectively.

Example 1: Python Class and Objects

define a class

class Bike:

 name = ""

 gear = 0

create object of class

bike1 = Bike()

access attributes and assign new values

bike1.gear = 11

bike1.name = "Mountain Bike"

print(f"Name: {bike1.name}, Gears: {bike1.gear} ")
Run Code

Output

Name: Mountain Bike, Gears: 11

In the above example, we have defined the class named Bike with two

attributes: name and gear.

We have also created an object bike1 of the class Bike.

Finally, we have accessed and modified the attributes of an object using

the . notation.

https://www.programiz.com/python-programming/online-compiler

Create Multiple Objects of Python Class

We can also create multiple objects from a single class. For example,

define a class

class Employee:

 # define an attribute

 employee_id = 0

create two objects of the Employee class

employee1 = Employee()

employee2 = Employee()

access attributes using employee1

employee1.employeeID = 1001

print(f"Employee ID: {employee1.employeeID}")

access attributes using employee2

employee2.employeeID = 1002

print(f"Employee ID: {employee2.employeeID}")
Run Code

Output

Employee ID: 1001

Employee ID: 1002

In the above example, we have created two objects employee1 and employee2 of

the Employee class.

Python Methods

We can also define a function inside a Python class. A Python

Function defined inside a class is called a method.

Let's see an example,

https://www.programiz.com/python-programming/online-compiler
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/function

create a class

class Room:

 length = 0.0

 breadth = 0.0

 # method to calculate area

 def calculate_area(self):

 print("Area of Room =", self.length * self.breadth)

create object of Room class

study_room = Room()

assign values to all the attributes

study_room.length = 42.5

study_room.breadth = 30.8

access method inside class

study_room.calculate_area()
Run Code

Output

Area of Room = 1309.0

In the above example, we have created a class named Room with:

 Attributes: length and breadth

 Method: calculate_area()

Here, we have created an object named study_room from the Room class. We

then used the object to assign values to attributes: length and breadth.

Notice that we have also used the object to call the method inside the class,

study_room.calculate_area()

Here, we have used the . notation to call the method. Finally, the statement

inside the method is executed.

https://www.programiz.com/python-programming/online-compiler

Python Constructors

Earlier we assigned a default value to a class attribute,

class Bike:

 name = ""

...

create object

bike1 = Bike()

However, we can also initialize values using the constructors. For example,

class Bike:

 # constructor function

 def __init__(self, name = ""):

 self.name = name

bike1 = Bike()

Here, __init__() is the constructor function that is called whenever a new

object of that class is instantiated.

The constructor above initializes the value of the name attribute. We have used

the self.name to refer to the name attribute of the bike1 object.

If we use a constructor to initialize values inside a class, we need to pass the

corresponding value during the object creation of the class.

bike1 = Bike("Mountain Bike")

Here, "Mountain Bike" is passed to the name parameter of __init__().

	Python Classes
	Define Python Class
	Python Objects
	Access Class Attributes Using Objects
	Example 1: Python Class and Objects
	Create Multiple Objects of Python Class
	Python Methods
	Python Constructors

