
Defining functions in Python allows you to create reusable blocks of code that perform

specific tasks. Here's the basic syntax for defining a function in Python:

def function_name(parameter1, parameter2, ...):

 # Code block

 # Perform actions

 # Optionally, return a value

Let's break down the parts of a function:

 def: This keyword is used to define a function.

 function_name: This is the name you give to your function. Choose a descriptive name

that represents the task the function performs.

 parameters: These are placeholders for values that you can pass to the function when

you call it. Parameters are optional.

 :: The colon indicates the start of the function's code block.

 Code block: This is the indented section of code that forms the body of the function. It

contains the instructions and actions the function should perform.

 return: This keyword is used to specify the value that the function should return. It is

optional, and a function can have multiple return statements.

Here's an example of a function that calculates the square of a number:

def square(number):

 result = number * number

 return result

You can call this function by using its name and passing an argument:

result = square(5)

print(result)

Output: 25

In this example, the square function takes a parameter called number and returns the

square of that number.

Functions can also have multiple parameters separated by commas. Here's an example

of a function that adds two numbers:

def add_numbers(a, b):

 sum = a + b

 return sum

You can call this function by passing two arguments:

result = add_numbers(3, 7)

print(result)

 # Output: 10

This function takes two parameters, a and b, and returns their sum.

By defining your own functions, you can encapsulate specific functionality, make your

code more modular, and reuse the same code across different parts of your program.

Parameters

In Python, parameters are placeholders in a function definition that allow you to pass

values into the function when it is called. Parameters define the inputs that the function

expects to receive.

There are two types of parameters in Python:

1. Positional Parameters: These parameters are specified in the function definition by

their names, separated by commas. When calling the function, you need to provide

arguments in the same order as the parameters.
def greet(name, age):

 print(f"Hello, {name}! You are {age} years old.")

greet("Alice", 25)

 # Output: Hello, Alice! You are 25 years old.

In this example, the greet function has two positional parameters: name and age. When

calling the function, we provide the corresponding arguments: "Alice" and 25.

1. Keyword Parameters: These parameters are specified with default values in the

function definition. When calling the function, you can either provide values for these

parameters or use the default values.
def greet(name, age=30):

 print(f"Hello, {name}! You are {age} years old.")

greet("Alice") # Output: Hello, Alice! You are 30 years old.

greet("Bob", age=40) # Output: Hello, Bob! You are 40 years old.

In this example, the greet function has a positional parameter name and a keyword

parameter age with a default value of 30. When calling the function, we can provide a

value for age, but if we don't, it will use the default value.

Parameters allow you to make your functions more flexible and reusable. They enable

you to pass different values to the function and customize its behavior based on the

inputs provided.

Additionally, you can use the *args and **kwargs syntax to accept a variable number of

arguments in a function. *args collects positional arguments into a tuple, while

**kwargs collects keyword arguments into a dictionary.

Here's an example:

def calculate_total(*args, **kwargs):

 total = sum(args)

 discount = kwargs.get("discount", 0)

 return total - discount

print(calculate_total(10, 20, 30)) # Output: 60

print(calculate_total(10, 20, 30, discount=5)) # Output: 55

print(calculate_total(10, 20, 30, discount=5, tax=2)) # Output: 55

In this example, the calculate_total function accepts any number of positional

arguments (*args) and keyword arguments (**kwargs). It calculates the sum of the

positional arguments and subtracts the discount specified by the discount keyword

argument. The tax keyword argument is ignored in this case.

Using parameters in Python functions allows you to create more versatile and flexible

code that can handle various inputs and scenarios.

Function documentation

Function documentation, also known as docstrings, is a way to provide a description and

documentation for your functions in Python. It serves as a form of inline documentation

that helps other developers (including yourself) understand the purpose, usage, and

behavior of the function.

A docstring is a string literal that appears as the first statement within a function's

definition. It is enclosed in triple quotes (""" or ''') and provides a detailed explanation

of what the function does, its parameters, return values, and any other relevant

information.

Here's an example of a function with a docstring:

def square(number):

 """

 Calculate the square of a number.

 Parameters:

 - number (int or float): The number to be squared.

 Returns:

 - The square of the input number.

 """

 return number * number

In this example, the docstring provides a clear description of what the square function

does, the type of the number parameter, and the return value. It follows a specific

structure with sections for parameters and return values.

To access the docstring of a function, you can use the built-in help() function or access

the __doc__ attribute of the function object:

print(help(square)) # Display the docstring using the help() function.

print(square.__doc__) # Access the docstring using the __doc__ attribute.

When executed, these statements will output the docstring of the square function.

It's good practice to include docstrings for all your functions, especially if you plan to

share or collaborate on your code. It helps others understand how to use your functions

correctly and provides a reference for future maintenance.

Here are a few tips for writing effective docstrings:

 Be concise and descriptive: Clearly explain what the function does and any important

details.

 Specify parameter types and descriptions: Document the types and meanings of the

parameters.

 Describe the return value: Explain what the function returns and its significance.

 Include examples if relevant: Show sample usage of the function if it helps illustrate its

behavior.

 Follow a consistent style: Choose a docstring style that matches your project or follows a

widely-used convention like Google-style or NumPy-style docstrings.

By documenting your functions with clear and informative docstrings, you can improve

the readability and maintainability of your code and make it easier for others to

understand and use your functions.

Keyword and Optional Parameters

In Python, keyword parameters and optional parameters are closely related concepts

that allow you to provide default values for function arguments. They provide flexibility

in calling functions by allowing you to omit certain arguments or specify them using

keyword syntax.

Optional Parameters: Optional parameters, also known as default parameters, are

parameters in a function definition that have default values assigned to them. If an

argument is not provided when calling the function, the default value is used instead.

Here's an example:

def greet(name, message="Hello"):

 print(f"{message}, {name}!")

greet("Alice") # Output: Hello, Alice!

greet("Bob", "Hi") # Output: Hi, Bob!

n this example, the greet function has two parameters: name and message. The message

parameter has a default value of "Hello". When calling the function, you can either

provide a value for message or omit it. If omitted, the default value is used.

Keyword Parameters: Keyword parameters, also known as named parameters or

keyword arguments, allow you to specify arguments by their parameter name when

calling a function. This allows you to pass arguments in any order, as long as you specify

the parameter name.

Here's an example:

def calculate_total(quantity, price):

 total = quantity * price

 print(f"The total is: {total}")

calculate_total(quantity=5, price=10) # Output: The total is: 50

calculate_total(price=10, quantity=5) # Output: The total is: 50

In this example, the calculate_total function has two parameters: quantity

and price. When calling the function, we use the parameter names to specify

the corresponding values. This allows us to pass the arguments in any order

we prefer.

Keyword parameters are especially useful when a function has many

parameters, some of which have default values. By specifying the parameter

name explicitly, you can make the function call more readable and self-

explanatory.

It's important to note that keyword parameters should follow positional

parameters. For example, in the function def example(a, b, c=0, d=0), a

and b are positional parameters, while c and d are keyword parameters with

default values.

By using optional parameters and keyword parameters, you can create

functions that are more flexible, customizable, and easier to use. They give you

control over the values passed to a function and allow you to provide sensible

defaults when certain arguments are not specified.

Passing Collections to a Function

In Python, you can pass collections, such as lists, tuples, or dictionaries, to functions as

arguments. Collections are a convenient way to group multiple values together, and

passing them to functions allows you to operate on the entire collection or specific

elements within it.

Here are a few examples of passing collections to functions:

1. Passing a List:

def process_numbers(numbers):

 for number in numbers:

 print(number * 2)

my_numbers = [1, 2, 3, 4, 5]

process_numbers(my_numbers)

In this example, the process_numbers function takes a list called numbers as an

argument. It iterates over the list and prints each number multiplied by 2. We pass the

my_numbers list to the function when calling it.

Passing a Tuple:

def print_coordinates(coordinates):

 x, y = coordinates

 print(f"X: {x}, Y: {y}")

my_coordinates = (3, 7)

print_coordinates(my_coordinates)

1. Here, the print_coordinates function takes a tuple called coordinates as an

argument. It unpacks the tuple into variables x and y and then prints their values. We

pass the my_coordinates tuple to the function.

Passing a Dictionary:

def greet_person(person):

 name = person["name"]

 age = person["age"]

 print(f"Hello, {name}! You are {age} years old.")

my_person = {"name": "Alice", "age": 25}

greet_person(my_person)

In this example, the greet_person function takes a dictionary called person as an

argument. It accesses the values using the corresponding keys (name and age) and prints

a greeting. We pass the my_person dictionary to the function.

When passing collections to functions, keep in mind that the function can modify the

collection if it is mutable (e.g., a list or a dictionary). Changes made to the collection

within the function will affect the original collection.

Additionally, you can use the * operator to unpack a collection into individual

arguments when calling a function. This can be useful when the function expects

separate arguments rather than a single collection.

def multiply_numbers(a, b, c):

 result = a * b * c

 print(result)

my_numbers = [2, 3, 4]

multiply_numbers(*my_numbers)

In this example, the multiply_numbers function takes three separate arguments. By

using *my_numbers, we unpack the elements of the my_numbers list and pass them as

individual arguments to the function.

Passing collections to functions allows you to work with multiple values efficiently and

perform operations on the entire collection or specific elements within it. It provides

flexibility and makes your code more concise and readable.

Variable Number of Arguments

In Python, you can define functions that accept a variable number of arguments using

special syntax. This allows you to pass any number of arguments to the function without

explicitly specifying each argument. There are two common ways to achieve this: using

*args and **kwargs.

1. Variable Positional Arguments (*args): The *args syntax allows you to pass a variable

number of positional arguments to a function. The arguments are collected into a tuple

within the function, which can be iterated over or accessed by index.

Here's an example:

def sum_numbers(*args):

 total = sum(args)

 return total

print(sum_numbers(1, 2, 3, 4, 5)) # Output: 15

print(sum_numbers(10, 20)) # Output: 30

In this example, the sum_numbers function accepts any number of arguments and

calculates their sum using the built-in sum() function. The *args parameter collects all

the positional arguments passed to the function into a tuple.

2. Variable Keyword Arguments (**kwargs): The **kwargs syntax allows you to pass a

variable number of keyword arguments to a function. The arguments are collected into

a dictionary within the function, where the argument names are the keys and their

values are the corresponding dictionary values.

Here's an example:

def print_info(**kwargs):

 for key, value in kwargs.items():

 print(f"{key}: {value}")

print_info(name="Alice", age=25) # Output: name: Alice \n age: 25

print_info(city="New York") # Output: city: New York

In this example, the print_info function accepts any number of keyword arguments

and prints them using a loop. The **kwargs parameter collects the keyword arguments

passed to the function into a dictionary.

You can also combine *args and **kwargs in a single function definition, allowing for a

combination of positional and keyword arguments:

def process_data(*args, **kwargs):

 # Process positional arguments

 for arg in args:

 print(arg)

 # Process keyword arguments

 for key, value in kwargs.items():

 print(f"{key}: {value}")

process_data(1, 2, 3, name="Alice", age=25)

In this example, the process_data function accepts both positional arguments (*args)

and keyword arguments (**kwargs). It demonstrates how you can work with both types

of arguments in a single function.

Using variable number of arguments allows you to create more flexible functions that

can handle a varying number of inputs. It provides versatility and allows you to write

concise code that caters to different scenarios and use cases.

